State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020local state management • checkpointing state to remote and persistent storage, e.g. a distributed filesystem or a database system • Available state backends in Flink: • In-memory • File system • conf.yaml: # Supported backends are 'jobmanager', 'filesystem', ‘rocksdb' # # state.backend: rocksdb # # Directory for checkpoints filesystem # # state.checkpoints.dir: path/to/checkpoint/folder/ getExecutionEnvironment val checkpointPath: String = ??? // configure path for checkpoints on the remote filesystem val backend = new RocksDBStateBackend(checkpointPath) // configure the state backend env.setS0 码力 | 24 页 | 914.13 KB | 1 年前3
PyFlink 1.15 Documentation˓→DynamicTableFactory' in the classpath. Available factory identifiers are: blackhole datagen filesystem print at org.apache.flink.table.factories.FactoryUtil.discoverFactory(FactoryUtil.java:399) at official PyFlink (and also Flink) distribution except the following connectors: blackhole, datagen, filesystem and print. So you need to specify the connector JAR package explicitly when executing PyFlink jobs:0 码力 | 36 页 | 266.77 KB | 1 年前3
PyFlink 1.16 Documentation˓→DynamicTableFactory' in the classpath. Available factory identifiers are: blackhole datagen filesystem print at org.apache.flink.table.factories.FactoryUtil.discoverFactory(FactoryUtil.java:399) at official PyFlink (and also Flink) distribution except the following connectors: blackhole, datagen, filesystem and print. So you need to specify the connector JAR package explicitly when executing PyFlink jobs:0 码力 | 36 页 | 266.80 KB | 1 年前3
监控Apache Flink应用程序(入门)is the most volatile and important metric to watch. This is especially true when using Flink’s filesystem statebackend as it keeps all state objects on the JVM Heap. If the size of long-living objects0 码力 | 23 页 | 148.62 KB | 1 年前3
共 4 条
- 1













