积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)Apache Flink(14)

语言

全部英语(14)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    to keep all users in memory? ??? Vasiliki Kalavri | Boston University 2020 We can use a hash function h to hash the user name (or IP) and select queries only when h(user) = 0. 13 In general: We can b1, …, b9. • select the query if the user hash value is in b0, b1, or b2. ??? Vasiliki Kalavri | Boston University 2020 We can use a hash function h to hash the user name (or IP) and select queries example, to get a 30% sample: • use 10 buckets, b0, b1, …, b9. • select the query if the user hash value is in b0, b1, or b2. How can we limit the sample size from growing indefinitely? ??? Vasiliki
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    3 Example use-case: Distinct users visiting one or multiple webpages Naive solution: maintain a hash table ??? Vasiliki Kalavri | Boston University 2020 How can we count the number of distinct elements or multiple webpages Naive solution: maintain a hash table Convert the stream into a multi-set of uniformly distributed random numbers using a hash function. ??? Vasiliki Kalavri | Boston University visiting one or multiple webpages Naive solution: maintain a hash table The more different elements we encounter in the stream, the more different hash values we shall see. Convert the stream into a multi-set
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    ring using the same hash function. Consistent hashing ??? Vasiliki Kalavri | Boston University 2020 n1 n3 n2 0 2128 Nodes and data are mapped to a ring using the same hash function. ei: | Boston University 2020 n1 n3 n2 0 2128 Nodes and data are mapped to a ring using the same hash function. ei: h ek: h Consistent hashing ??? Vasiliki Kalavri | Boston University nodes. n4 In practice, each node is mapped to multiple points on the ring using multiple hash functions. Consistent hashing ??? Vasiliki Kalavri | Boston University 2020 n1 n3 n2 0 2128 When
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    mitigation ??? Vasiliki Kalavri | Boston University 2020 Key partitioning 2 w2 w1 w3 round-robin hash-based • Items are perfectly balanced among workers • No routing table required • Key semantics workers at random and send the item to the least loaded of those two • the system uses two hash functions, H1 and H2 and checks the load of the two sampled workers: P(k) = arg mini(Li(t): H1(k)=i ∨ state needs to be merged to produce the final result: the computation must consist of combinable functions • workers need to be able to compute their current load locally 12 ??? Vasiliki Kalavri | Boston
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    plans, e.g. order of operators • scheduling and placement decisions • different algorithms, e.g. hash-based vs. broadcast join • What does performance depend on? • input data, intermediate data
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 Window functions define the computation that is performed on the elements of a window • Incremental aggregation functions are applied when an element is added to a the aggregated value as the result. • ReduceFunction and AggregateFunction • Full window functions collect all elements of a window and iterate over the list of all collected elements when evaluated: evaluated: • They require more space but support more complex logic. • ProcessWindowFunction Window functions 14 Vasiliki Kalavri | Boston University 2020 val minTempPerWindow: DataStream[(String, Double)]
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    checkpoint("path/to/persistent/storage") 45 / 79 Stateful Stream Operations ▶ Spark API proposes two functions for statful processing: ▶ updateStateByKey • It is executed on the whole range of keys in DStream proportional to the size of the batch. 46 / 79 Stateful Stream Operations ▶ Spark API proposes two functions for statful processing: ▶ updateStateByKey • It is executed on the whole range of keys in DStream proportional to the size of the batch. 46 / 79 Stateful Stream Operations ▶ Spark API proposes two functions for statful processing: ▶ updateStateByKey • It is executed on the whole range of keys in DStream
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    PyFlink supports various UDFs and APIs to allow users to execute Python native functions. See also the latest User- defined Functions and Row-based Operations. The first example is UDFs used in Table API & GenericJdbcSinkFunction. ˓→open(GenericJdbcSinkFunction.java:52) at org.apache.flink.api.common.functions.util.FunctionUtils. ˓→openFunction(FunctionUtils.java:34) at org.apache.flink.streaming.api.operators
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    PyFlink supports various UDFs and APIs to allow users to execute Python native functions. See also the latest User- defined Functions and Row-based Operations. The first example is UDFs used in Table API & GenericJdbcSinkFunction. ˓→open(GenericJdbcSinkFunction.java:52) at org.apache.flink.api.common.functions.util.FunctionUtils. ˓→openFunction(FunctionUtils.java:34) at org.apache.flink.streaming.api.operators
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    distributed across all parallel tasks of the function’s operator. Keyed state can only be used by functions that are applied on a KeyedStream: • When the processing method of a function with keyed input
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
FilteringandsamplingstreamsCS591K1DataStreamProcessingAnalyticsSpring2020CardinalityfrequencyestimationFaulttolerancedemoreconfigurationSkewmitigationStreamingoptimizationsWindowstriggersScalableSparkFlinkPy1.15Documentation1.16Statemanagement
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩