积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(14)Apache Flink(14)

语言

全部英语(13)中文(简体)(1)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 14 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.1.2 O2: Java gateway process exited before sending its port number . . . . . . . . . . . 22 1.3.2 Usage issues . . . . . . . . . . . . . . virtualenv --python /path/to/python/executable venv The virtual environment needs to be activated before to use it. To activate the virtual environment, run: source venv/bin/activate That is, execute venv conda create --name venv python=3.8 -y The conda virtual environment needs to be activated before to use it. To activate the conda virtual environment, run: 4 Chapter 1. How to build docs locally
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.1.2 O2: Java gateway process exited before sending its port number . . . . . . . . . . . 22 1.3.2 Usage issues . . . . . . . . . . . . . . virtualenv --python /path/to/python/executable venv The virtual environment needs to be activated before to use it. To activate the virtual environment, run: source venv/bin/activate That is, execute venv conda create --name venv python=3.8 -y The conda virtual environment needs to be activated before to use it. To activate the conda virtual environment, run: 4 Chapter 1. How to build docs locally
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    causality: • An event is pre-snapshot if it occurs before the local snapshot on a process, otherwise it is post- snapshot • If event A happens causally before B and B is pre-snapshot, then A is also pre-snapshot University 2020 Example p1 p2 p3 ⊙ init before marker after marker 23 m1 m2 ??? Vasiliki Kalavri | Boston University 2020 Example p1 p2 p3 ⊙ init before marker after marker s1 Snapshot 23 m1 m1 m2 ??? Vasiliki Kalavri | Boston University 2020 p1 p2 p3 ⊙ marker s1 Snapshot Example before marker after marker 24 m1 m2 recording… p1 records its state, forwards the marker, and starts
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Producers can generate events in a higher rate than the rate consumers can process events. • What happens if consumers cannot keep up with the event rate? 2 ??? Vasiliki Kalavri | Boston University 2020 Producers can generate events in a higher rate than the rate consumers can process events. • What happens if consumers cannot keep up with the event rate? • drop messages 2 ??? Vasiliki Kalavri | Boston Producers can generate events in a higher rate than the rate consumers can process events. • What happens if consumers cannot keep up with the event rate? • drop messages • buffer messages in a queue:
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    operators to emit all records that depend only on records before the barrier. ▶ Once all sinks have received the barriers, Flink knows that all records before the barriers will never be needed again. ▶ Asynchronous operators to emit all records that depend only on records before the barrier. ▶ Once all sinks have received the barriers, Flink knows that all records before the barriers will never be needed again. ▶ Asynchronous
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    different output 9 Vasiliki Kalavri | Boston University 2020 Outputs after recovery 10 Recovery type Before failure After failure Precise t1 t2 t3 t4 t5 t6 … Gap t1 t2 t3 t5 t6 … Rollback-repeating address non-determinism • Each output is checkpointed together with its unique ID to stable storage before being delivered to the next stage • Retries simply replay the output that has been checkpointed
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    event become visible. Once the event is created it is usually stored in a persistent message queue, before it is processed by Apache Flink, which then writes the results to a database or calls a downstream common reason is skew in the partition key of the data, which can be mitigated by pre-aggregating before the shuffle or keying on a more evenly distributed key. 4.13.2.1 Key Metrics Metrics Scope
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    intermediate data • operator properties • How can we estimate the cost of different strategies? • before execution or during runtime Query optimization (I) ??? Vasiliki Kalavri | Boston University 2020 tasks to receiving tasks. • The network component of a TaskManager collects records in buffers before they are shipped, i.e., records are not shipped one by one but batched. ??? Vasiliki Kalavri |
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    When a query arrives: • if the user is sampled: add the query to S • if we haven’t seen the user before: generate a random integer ru between 0 and 9 and add the user to the sample if ru = 0. ??? Vasiliki When a query arrives: • if the user is sampled: add the query to S • if we haven’t seen the user before: generate a random integer ru between 0 and 9 and add the user to the sample if ru = 0. Do we
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    plane and not on a train? • What if you never came back online? • How long do we have to wait before we decide that we have seen all events? How do we know what event time it is? 7 Vasiliki Kalavri
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16ExactlyoncefaulttoleranceinApacheCS591K1DataStreamProcessingandAnalyticsSpring2020FlowcontrolloadsheddingScalableSparkStreamingHighavailabilityrecoverysemanticsguarantees监控应用程序应用程序入门optimizationsFilteringsamplingstreamsNotionsoftimeprogress
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩