积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)Apache Flink(12)

语言

全部英语(10)中文(简体)(2)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.012 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    logical conjunction • if A is a projection on multiple attributes • if A is an idempotent aggregation Operator separation A A2 A1 Separate operators into smaller computational steps • beneficial Boston University 2020 24 • Cost of Merge = 0.5 • Cost of A = 0.5 • Splitting A allows a pre-aggregation similar to what combiners do in MapReduce Operator separation merge X merge A A X merge micro-batches D-Streams • During an interval, input data received is stored using RDDs • A D-Stream is a group of such RDDs which can be processed using common operators 45 Example • pageViews is a D-Stream
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    Kinesis, ... TwitterUtils.createStream(ssc, None) KafkaUtils.createStream(ssc, [ZK quorum], [consumer group id], [number of partitions]) 15 / 79 Input Operations - Custom Sources (1/3) ▶ To create a custom express it as the following SQL query. SELECT action, WINDOW(time, "1 hour"), COUNT * FROM events GROUP BY action, WINDOW(time, "1 hour") 61 / 79 Structured Streaming Example (3/3) val inputDF = spark where("id > 10") // using untyped APIs ds.filter(_.id > 10).map(_.action) // using typed APIs // Aggregation df.groupBy("action") // using untyped API ds.groupByKey(_.action) // using typed API // SQL commands
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    val sensorData: DataStream[SensorReading] = ... val avgTemp = sensorData .keyBy(_.id) // group readings in 1s event-time windows .window(TumblingEventTimeWindows.of(Time.seconds(1))) .process(new functions define the computation that is performed on the elements of a window • Incremental aggregation functions are applied when an element is added to a window: • They maintain a single value as
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    measurements analysis • Monitoring applications • Complex filtering and alarm activation • Aggregation of multiple sensors and joins • Examples • Real-time statistics, e.g. weather maps • Monitor activity analysis • Visualization and aggregation • impressions, clicks, transactions, likes, comments • Analytics on user activity • Filtering, aggregation, joins with static data (e.g. user profile
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    given the constraint that system throughput matches the data input rate • In the case of known aggregation functions, results can be scaled using approximate query processing techniques, where accuracy a data stream manager. (VLDB ’03) • N. Tatbul and S. Zdonik. Window-aware load shedding for aggregation queries over data streams. (VLDB’06) • N. Tatbul, U. Çetintemel, and S. Zdonik. Staying fit:
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Operator replicates a stream, commonly to be used as input to multiple downstream operators. • Group by / Partition Operators split a stream into sub-streams according to a function or the event contents Kalavri | Boston University 2020 CQL GroupBy Example Select IStream(Count(*)) From S1 [Rows 1000] Group By S1.B Count the number or events in the last 1000 rows for each value of B 20 Vasiliki Kalavri University 2020 Some queries expressed using aggregates are monotonic: SELECT DeptNo FROM empl GROUP BY DeptNo HAVING SUM(empl.Sal) > 10000 The introduction of a new empl can only expand the set
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Consumers label themselves with a consumer group name, and each record published to a topic is delivered to one consumer instance within each subscribing consumer group. Consumer instances can be in separate separate processes or on separate machines. If all the consumer instances have the same consumer group, then the records will effectively be load balanced over the consumer instances. If all the consumer
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    topic T can be viewed as becoming a member of a group T. • Publishing an event on topic T can be viewed as broadcasting the event to all members of group T. • Topic hierarchies allow topic organization
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    as ranges • On restore, reads are sequential within each key-group, and often across multiple key-groups • The metadata of key-group-to-subtask assignments are small. No need to maintain explicit
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Apache Flink的过去、现在和未来

    ---------------------------- Stream Mode: 12:01> SELECT Name, SUM(Score), MAX(Time) FROM USER_SCORES GROUP BY Name; Flink 在阿里的服务情况 集群规模 超万台 状态数据 PetaBytes 事件处理 十万亿/天 峰值能力 17亿/秒 Flink 的过去 offline Real-time
    0 码力 | 33 页 | 3.36 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
StreamingoptimizationsCS591K1DataStreamProcessingandAnalyticsSpring2020ScalableSparkFlinkWindowstriggersCourseintroductionFlowcontrolloadsheddinglanguagesoperatorsemanticsIntroductiontoApacheKafkaingestionpubsubsystemsFaulttolerancedemoreconfiguration过去现在未来
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩