积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(23)Apache Flink(23)

语言

全部英语(21)中文(简体)(2)

格式

全部PDF文档 PDF(23)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 23 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    vkalavri@bu.edu CS 591 K1: Data Stream Processing and Analytics Spring 2020 2/06: Notions of time and progress Vasiliki Kalavri | Boston University 2020 Mobile game application • input stream: Vasiliki Kalavri | Boston University 2020 • Processing time • the time of the local clock where an event is being processed • a processing-time window wouldn’t account for game activity while the train Event time • the time when an event actually happened • an event-time window would give you the extra life • results are deterministic and independent of the processing speed Notions of time 5 Vasiliki
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Conditions might change • State is accumulated over time 2 events/s time rate decrease events/s time throughput degradation events/s time rate increase : input rate : throughput ??? Vasiliki Kalavri | Boston University 2020 Scaling approaches Metrics • service time and waiting time per tuple and per task • total time spent processing a tuple and all its derived results • CPU utilization one operator at a time • Predictive: at-once for all operators 8 ??? Vasiliki Kalavri | Boston University 2020 Queuing theory models 9 • Metrics • service time and waiting time per tuple and per
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    receive an event 2. store in local buffer and possibly update state 3. produce output What can go wrong: • lost events • duplicate or lost state updates • wrong result 5 mi mo Was mi fully • The state consists of • input queues • operator state • output queues • Short recovery time • High runtime overhead • The checkpoint interval determines the trade-off 14 Ni primary • The state consists of • input queues • operator state • output queues • Short recovery time • High runtime overhead • The checkpoint interval determines the trade-off 14 Ni primary
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Some slides in this lecture have been generously provided by Paris Carbone, KTH Go read his PhD thesis: http://kth.diva-portal.org/smash/get/diva2:1240814/FULLTEXT01.pdf 2 ??? Kalavri | Boston University 2020 On receiving a marker (I) A process receiving a marker for the first time: 1. Records its own state. 2. Marks the channel that the marker came in on as empty. a. Future cpConfig.setMinPauseBetweenCheckpoints(30000); // allow three checkpoints to be in progress at the same time cpConfig.setMaxConcurrentCheckpoints(3); // checkpoints have to complete within five minutes, or
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • e.g. joins, holistic aggregates • Compute on most recent events only • when providing real-time traffic information, you probably don't care about an accident that happened 2 hours ago • Recent 
 val maxTemp = sensorData
 .map(r => Reading(r.id,r.time,(r.temp-32)*(5.0/9.0)))
 .keyBy(_.id) .timeWindow(Time.minutes(1)) .max("temp")
 } } 3 Example: Window sensor can use the time characteristic to tell Flink how to define time when you are creating windows. The time characteristic is a property of the StreamExecutionEnvironment: Configuring a time characteristic
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    79 Stream Processing Systems Design Issues ▶ Continuous vs. micro-batch processing ▶ Record-at-a-Time vs. declarative APIs 3 / 79 Outline ▶ Spark streaming ▶ Flink 4 / 79 Spark Streaming 5 / 79 79 Contribution ▶ Design issues • Continuous vs. micro-batch processing • Record-at-a-Time vs. declarative APIs 6 / 79 Spark Streaming ▶ Run a streaming computation as a series of very small, deterministic entry point of all Spark Streaming functionality. ▶ The second parameter, Seconds(1), represents the time interval at which streaming data will be divided into batches. val conf = new SparkConf().setAppName(appName)
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 A simple and efficient synopsis Suppose that our data consists of a large numeric time series. What summary would let us compute the statistical variance of this series? 3 var = ∑ University 2020 A simple and efficient synopsis Suppose that our data consists of a large numeric time series. What summary would let us compute the statistical variance of this series? 3 • the sum University 2020 A simple and efficient synopsis Suppose that our data consists of a large numeric time series. What summary would let us compute the statistical variance of this series? 3 • the sum
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Streaming in Apache Flink

    Flink programs • Implement streaming data processing pipelines • Flink managed state • Event time Streaming in Apache Flink • Streams are natural • Events of any type like sensors, click streams processing as a subset of stream processing Processing Data Dataflows Let's Talk About Time • Processing Time • Event Time • Events may arrive out of order! What Can Be Streamed? • Anything (if you write events, FALSE for ride end events startTime DateTime the start time of a ride endTime DateTime the end time of a ride, ""1970-01-01 00:00" for start events startLon Float
    0 码力 | 45 页 | 3.00 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    “relation stream”) applied to relation R contains a stream element whenever tuple s is in R at time τ. 6 Vasiliki Kalavri | Boston University 2020 Imperative language: Aurora SQuAl Queries are represented attribute X > 0 enters the system and also an item of type B with Y = 10 is detected, followed (in a time interval of 5–15 s) by an item of type C with Z < 5. 8 Vasiliki Kalavri | Boston University 2020 satisfies a loop condition. • not commonly supported • a termination condition must be defined, e.g. time limit 12 Vasiliki Kalavri | Boston University 2020 timely::example(|scope| {
 
 let (handle
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    Flink作业的整个拓扑结构,并且事件和屏障不能相互超越。因此,一个成功的检查点显示没有通道是完全拥挤 的。 3.1 关键指标 指标 范围 描述 uptime job The time that the job has been running without interruption. fullRestarts job The total number of full caolei – 监控Apache Flink应用程序(入门) 监控 – 8 3.2 仪表盘示例 Figure 1: Uptime (35 minutes), Restarting Time (3 milliseconds) and Number of Full Restarts (7) caolei – 监控Apache Flink应用程序(入门) 监控 – 9 Figure 当watermarks超过30时,结束于t = 30的事件时间窗口将被关闭并计算。 因此,您应该在应用程序中对事件时间敏感的operators(如流程函数和窗口)上监控watermarks。如果当前处理 时间与被称为 even-time skew的watermarks之间的差异非常高,那么它通常意味着可能会出现两种情况。首 先,它可能意味着您只是在处理旧的事件,例如在停机后的追赶期间,或者当您的工作无法继续,而事件正在 排队时。
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
NotionsoftimeandprogressCS591K1DataStreamProcessingAnalyticsSpring2020ElasticitystatemigrationPartHighavailabilityrecoverysemanticsguaranteesExactlyoncefaulttoleranceinApacheFlinkWindowstriggersScalableSparkStreamingFilteringsamplingstreamslanguagesoperator监控应用程序应用程序入门
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩