积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)Apache Flink(12)

语言

全部英语(12)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.013 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    html in the Browser 1.1 Getting Started This page summarizes the basic steps required to setup and get started with PyFlink. There are live notebooks where you can try PyFlink out without any other step: following checks. Check the logging messages in the log file to see if there are any problems: # Get the installation directory of PyFlink python3 -c "import pyflink;import os;print(os.path.dirname(os If there any any problems, you could check the logging messages in the log file as following: # Get the installation directory of PyFlink python3 -c "import pyflink;import os;print(os.path.dirname(os
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    html in the Browser 1.1 Getting Started This page summarizes the basic steps required to setup and get started with PyFlink. There are live notebooks where you can try PyFlink out without any other step: following checks. Check the logging messages in the log file to see if there are any problems: # Get the installation directory of PyFlink python3 -c "import pyflink;import os;print(os.path.dirname(os If there any any problems, you could check the logging messages in the log file as following: # Get the installation directory of PyFlink python3 -c "import pyflink;import os;print(os.path.dirname(os
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Boston University 2020 MapReduce combiners example: URL access frequency 26 map() reduce() GET /dumprequest HTTP/1.1 Host: rve.org.uk Connection: keep-alive Accept: text/html,application/ xhtml+xml https://www.google.be/ Accept-Language: en-US,en;q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3 GET /dumprequest HTTP/1.1 Host: rve.org.uk Connection: keep-alive Accept: text/html,application/ xhtml+xml https://www.google.be/ Accept-Language: en-US,en;q=0.8 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3 GET /dumprequest HTTP/1.1 Host: rve.org.uk Connection: keep-alive Accept: text/html,application/ xhtml+xml
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    • The keys are ordered according to a user-specified comparator function. Basic operations • Get(key): fetch a single key-value from the DB • Put(key, val): insert a single key-value into the DB State.get(): Iterable[T] • ListState.update(values: java.util.List[T]) Flink’s state primitives 13 Vasiliki Kalavri | Boston University 2020 • MapState[K, V]: a map of keys and values • get(key: ReducingState[T]: aggregates values using a ReduceFunction • ReducingState.add(value: T) • ReducingState.get() • AggregatingState[I, O]: aggregates values using an AggregateFunction Flink’s state primitives
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    How can we select a representative sample of an unbounded stream? • we want to ask queries and get statistically meaningful answers about the entire stream • we don’t necessarily know the queries How can we select a representative sample of an unbounded stream? • we want to ask queries and get statistically meaningful answers about the entire stream • we don’t necessarily know the queries users by hashing usernames to b buckets and selecting the query if h(user) < a. For example, to get a 30% sample: • use 10 buckets, b0, b1, …, b9. • select the query if the user hash value is in
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    watermark public abstract long currentWatermark(); } } 19 ProcessWindowFunction interface Get start and end timestamps Iterate over the window contents Vasiliki Kalavri | Boston University 2020 override def processElement(r: SensorReading, ctx:Context, out: Collector[String]): Unit = { // get previous temperature val prevTemp = lastTemp // update last temperature lastTemp
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the application developer Live state migration ??? Vasiliki Kalavri | Boston University 2020 35 get state control command Helper operators, hidden from the application developer Live state migration 2020 36 control command Live state migration ??? Vasiliki Kalavri | Boston University 2020 36 get state control command Live state migration ??? Vasiliki Kalavri | Boston University 2020 36 transfer
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    R = 6, 2R = 64 distinct elements No estimate in between powers of 2! 9 Is it good enough? To get a better estimate, we need to use multiple hash functions and combine their estimates: • Using many work: it is always a power of 2, thus, if the correct estimate is between two powers of 2, we won’t get a good estimate. Solution: harmonic mean (HyperLogLog) ̂n = am ⋅ m2 ⋅ ( m−1 ∑ j=0 2−COUNT[j])
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Notions of time and progress - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    output: rewards based on how fast the user meets goals • e.g. pop 500 bubbles within 1 minute and get extra life Vasiliki Kalavri | Boston University 2020 What’s the meaning of one minute? 3 Vasiliki
    0 码力 | 22 页 | 2.22 MB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    subscribers are disconnected. • Synchronization: interacting parties are not blocked • Subscribers get notified asynchronously while possibly performing some other concurrent action. 18 Paradigm Space
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16StreamingoptimizationsCS591K1DataStreamProcessingandAnalyticsSpring2020StatemanagementFilteringsamplingstreamsWindowstriggersElasticitystatemigrationPartCardinalityfrequencyestimationNotionsoftimeprogressingestionpubsubsystems
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩