积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)Apache Flink(13)

语言

全部英语(13)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.016 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    | Boston University 2020 Counting distinct elements 2 ??? Vasiliki Kalavri | Boston University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: webpages ??? Vasiliki Kalavri | Boston University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting one or multiple webpages hash table ??? Vasiliki Kalavri | Boston University 2020 How can we count the number of distinct elements seen so far in a stream? 3 Example use-case: Distinct users visiting one or multiple webpages
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 Filtering and sampling streams - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Sampling streams 5 ??? Vasiliki Kalavri | Boston University 2020 6 A sample is a set of data elements selected via some random process Samples: the most fundamental synopses input stream add to sample of fixed size, e.g. s elements. 14 ??? Vasiliki Kalavri | Boston University 2020 Instead of a fixed proportion, assume we can only store a sample S of fixed size, e.g. s elements. 14 How can we continuously 2020 Instead of a fixed proportion, assume we can only store a sample S of fixed size, e.g. s elements. 14 How can we continuously maintain a representative fixed-size sample of the stream so far
    0 码力 | 74 页 | 1.06 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    single-element RDDs by counting the number of elements in each RDD of the source DStream. ▶ union • Returns a new DStream that contains the union of the elements in two DStreams. 22 / 79 Transformations single-element RDDs by counting the number of elements in each RDD of the source DStream. ▶ union • Returns a new DStream that contains the union of the elements in two DStreams. 22 / 79 Transformations Transformations (4/4) ▶ reduce • Returns a new DStream of single-element RDDs by aggregating the elements in each RDD using a given function. ▶ reduceByKey • Returns a new DStream of (K, V) pairs where the values
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    window operator, you need to specify two window components: • A window assigner determines how the elements of the input stream are grouped into windows. A window assigner produces a WindowedStream (or • A window function is applied on a WindowedStream (or AllWindowedStream) and processes the elements assigned to a window. 5 Keyed vs. non-keyed windows Vasiliki Kalavri | Boston University 2020 Kalavri | Boston University 2020 Window functions define the computation that is performed on the elements of a window • Incremental aggregation functions are applied when an element is added to a window:
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 Select IStream(*) From S1 [Rows 5], S2 [Rows 10] Where S1.A = S2.A Last 5 elements of stream S1 and last 10 elements of S2 stream-to-relation relation-to-relation relation-to-stream CQL Example Vasiliki Kalavri | Boston University 2020 Operator types (I) • Single-Item Operators process stream elements one-by-one. • selection, filtering, projection, renaming. • Logic Operators define rules for two streams by matching elements satisfying a condition • commonly applied on windows • Union operators combine two or more streams without ordering guarantees • elements have to be of the same
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    operators are nodes, data channels are edges • channels have FIFO semantics • streams of data elements flow continuously along edges Operators • receive one or more input streams • perform tuple-at-a-time Kalavri | Boston University 2020 Operator selectivity 6 • The number of output elements produced per number of input elements • a map operator has a selectivity of 1, i.e. it produces one output element state based on a key attribute • Ensure ordering constraints: if downstream operator expects elements in a particular order, merging should handle that • Avoid deadlocks: if split cannot push data
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    unbounded • we cannot store the entire stream in an accessible way • we have to process stream elements on-the-fly using limited memory 2 Vasiliki Kalavri | Boston University 2020 Properties of data Streams as evolving relations • A stream is interpreted as describing a changing relation. • Stream elements bear a valid timestamp, Vs, after which they are considered valid and they can contribute to the synopsis solution • They are purpose-built and query-specific • different synopsis to count distinct elements than to keep track of top-K events 33 Vasiliki Kalavri | Boston University 2020 Dataflow Streaming
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Skew mitigation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Find all items x in a data stream such that: • freq(x) > δ*N, where N is the number of stream elements • The solution will not contain any item y with frequency: • freq(y) < (δ - ε)*N, for a user-chosen we remove infrequent elements. 6 ??? Vasiliki Kalavri | Boston University 2020 Lossy counting algorithm D = {} // empty list wcur = 1 // first window id N = 0 // elements seen so far Insert step = N + 1 Delete step Iterate over D and remove every element x with fx + εx ≤ wcur Output: elements in D with fx ≥ (δ - ε) * N 7 ??? Vasiliki Kalavri | Boston University 2020 Example 8 1 2 2
    0 码力 | 31 页 | 1.47 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    union them. Firstly, you can create a Table from a Python List Object [3]: table = table_env.from_elements([(1, 'Hi'), (2, 'Hello')]) table.get_schema() [3]: root |-- _1: BIGINT |-- _2: STRING Create a pyflink-docs, Release release-1.15 [4]: from pyflink.table import DataTypes table = table_env.from_elements([(1, 'Hi'), (2, 'Hello')], DataTypes.ROW([DataTypes.FIELD("id", DataTypes. ˓→TINYINT()), DataTypes [9]: # prepare the catalog # register Table API tables in the catalog old_table = table_env.from_elements([(1, 'Hi'), (2, 'Hello')], ['id', 'data']) table_env.create_temporary_view('source_table', old_table)
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    union them. Firstly, you can create a Table from a Python List Object [3]: table = table_env.from_elements([(1, 'Hi'), (2, 'Hello')]) table.get_schema() [3]: root |-- _1: BIGINT |-- _2: STRING Create a pyflink-docs, Release release-1.16 [4]: from pyflink.table import DataTypes table = table_env.from_elements([(1, 'Hi'), (2, 'Hello')], DataTypes.ROW([DataTypes.FIELD("id", DataTypes. ˓→TINYINT()), DataTypes [9]: # prepare the catalog # register Table API tables in the catalog old_table = table_env.from_elements([(1, 'Hi'), (2, 'Hello')], ['id', 'data']) table_env.create_temporary_view('source_table', old_table)
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
CardinalityandfrequencyestimationCS591K1DataStreamProcessingAnalyticsSpring2020FilteringsamplingstreamsScalableSparkStreamingFlinkWindowstriggerslanguagesoperatorsemanticsoptimizationsprocessingfundamentalsSkewmitigationPy1.15Documentation1.16
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩