积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(20)Apache Flink(20)

语言

全部英语(18)中文(简体)(2)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 20 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Exactly-once fault-tolerance in Apache Flink - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    J34WetX1aOXxSJ4Kok I6q3oxWMLxhbaUDbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaca9SdWvuDGSZeAWp QoFGr/LV7 J34WetX1aOXxSJ4Kok I6q3oxWMLxhbaUDbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaca9SdWvuDGSZeAWp QoFGr/LV7 J34WetX1aOXxSJ4Kok I6q3oxWMLxhbaUDbSbt2swm7G6GE/gIvHlS8+pe8+W/ctjlo64OBx3szMwLU8G1cd1vZ2V1bX1js7RV3t7Z3duvHBw+6CRTDH2WiES1Q6pRcIm+4UZgO1VI41BgKxzdTv3WEyrNE3lvxikGMR1IHnFGjZWaca9SdWvuDGSZeAWp QoFGr/LV7
    0 码力 | 81 页 | 13.18 MB | 1 年前
    3
  • pdf文档 Flink如何实时分析Iceberg数据湖的CDC数据

    +arquet、Avro、Orcn。 t点 A3a/21 Kudu 维护 CDC 数据p 、支持L时更新数据,时效性佳。 2、CK加速,适合OLAP分析。 方案评估 优点 、cedKudup群,a较小众。维护 O本q。 2、H HDFS / S3 / OSS 等D裂。数据c e,且KAO本不如S3 / OSS。 3、Kudud批量P描不如3ar4u1t。 4、不支持增量SF。 h点 直接D入CDC到Hi2+分析 、流程能E作 2、Hi2+存量数据不受增量数据H响。 方案评估 优点 、数据不是CR写入; 2、每次数据D致都要 MERGE 存量数据 。T+ 方GT新3R效性差。 3、不M持CR1ps+rt。 缺点 SCaDk + )=AFa IL()(数据 MER,E .NTO GE=DE US.N, chan>=E ON GE=DE.GE=D.< = chan>=E THEN .NSERT (GE=D.<, a<=E.GE=D.<, chan>=E.a<t S1a2k+D+/4a,架构简e。 2、无在k服务。l护和运nS本低。 2、D存存储,Ca速O快。 3、方便上S3 OSS,超高性价比。 方案s估 优点 1、增量和全量表割p,时效性不足。 2、r计和l护额外hChang+
    0 码力 | 36 页 | 781.69 KB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    failure Precise t1 t2 t3 t4 t5 t6 … Gap t1 t2 t3 t5 t6 … Rollback-repeating t1 t2 t3 t2 t3 t4 … Rollback-convergent t1 t2 t3 t’2 t’3 t4 … Rollback-divergent t1 t2 t3 t’2 t’3 t’4 … The output secondary receives tuples from upstream and processes them in parallel with the primary but it doesn’t output results • Watermarks are used to identify duplicate output tuples and trim the secondary’s definitely isn’t Vasiliki Kalavri | Boston University 2020 21 http://streamingbook.net/fig/5-5 Bloom filter: if true, the element is probably in the set if false, it definitely isn’t Separate bloom
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    events? 48 t t+1 t+3 t+4 t+5 t+6 t+7 t+2 3 events 4 events 2 events? How would you compute… • the maximum every 100 events? • clicks per user session? 49 t t+1 t+3 t+4 t+5 t+6 t+7 t+2 logged in per user session? • faster than the batch size? • alerts when patterns occur? 50 t t+1 t+3 t+4 t+5 t+6 t+7 t+2 How would you compute… ??? Vasiliki Kalavri | Boston University 2020 51 • TaskManagers
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 State management - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 • ValueState[T]: a single value of type T • ValueState.value() • ValueState.update(value: T) • ListState[T]: a list of elements of type T • ListState.add(value: T) • ListState.addAll(values: addAll(values: java.util.List[T]). • List State.get(): Iterable[T] • ListState.update(values: java.util.List[T]) Flink’s state primitives 13 Vasiliki Kalavri | Boston University 2020 • MapState[K, V]: a over the contained entries, keys, and values • ReducingState[T]: aggregates values using a ReduceFunction • ReducingState.add(value: T) • ReducingState.get() • AggregatingState[I, O]: aggregates
    0 码力 | 24 页 | 914.13 KB | 1 年前
    3
  • pdf文档 Graph streaming algorithms - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 7 Let G(t) = (V(t), E(t)) be the graph observed up to timestamp t. For t=0, V(t) = E(t) = {} For every t > 0, we receive one event: • Insert-only edge stream: or deletions A t+1, the graph is obtained by inserting a new edge or deleting an existing edge (u, v) to E(t+1). If any of u, v do not already exist in V(t), they are added to V(t+1). Preliminaries • Edge endpoints must have different signs • When merging components, if flipping all signs doesn’t work => the graph is not bipartite Bipartite graph checking ??? Vasiliki Kalavri | Boston University
    0 码力 | 72 页 | 7.77 MB | 1 年前
    3
  • pdf文档 PyFlink 1.15 Documentation

    job, it could choose one of these Python virtual environments to use. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m requirements where the pre-installed Python environments could not meet. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m deployment. You could execute PyFlink jobs in application mode as following: ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    job, it could choose one of these Python virtual environments to use. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m requirements where the pre-installed Python environments could not meet. ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m deployment. You could execute PyFlink jobs in application mode as following: ./bin/flink run-application -t yarn-application \ -Djobmanager.memory.process.size=1024m \ -Dtaskmanager.memory.process.size=1024m
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    alternatively, events can have validity intervals. • The contents of the relation at time t are all events with Vs ≤ t . Vasiliki Kalavri | Boston University 2020 Types of streams • Base stream: produced 64K <t1, 16.2.3.7, 10.1.0.2, 20K> <t2, 13.5.6.7, 12.4.0.3, 32K> <t3, 16.2.3.7, 11.8.6.2, 28K> 17 append … … … … new events old events R(t1) R(t2) R(t3) R(tk) concatenation of serializations of the relations. • as a list of tuple-index pairs, where <t, j> indicates that t ∈ rj • as a serialization of r1 followed by a series of delta tuples that indicate updates
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    .inspect(|x| println!("seen: {:?}", x))
 .connect_loop(handle);
 }); t (t, l1) (t, (l1, l2)) Streaming Iteration Example Terminate after 100 iterations Create the feedback Vasiliki Kalavri | Boston University 2020 Window types (II) • Fixed windows have bound which don’t move • events received between 1/1/2019 and 12/1/2019 • Landmark windows have a fixed lower bound Sequence: Let t1, … ,tn be tuples from a relation R. The list S = [t1, … ,tn] is called a sequence, of length n, of tuples from R. The empty sequence [ ] has length 0. We use t ∈ S to denote that
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
ExactlyoncefaulttoleranceinApacheFlinkCS591K1DataStreamProcessingandAnalyticsSpring2020如何实时分析Iceberg数据CDCHighavailabilityrecoverysemanticsguaranteesStreamingoptimizationsStatemanagementGraphstreamingalgorithmsPy1.15Documentation1.16processingfundamentalslanguagesoperator
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩