积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)Apache Flink(16)

语言

全部英语(15)中文(简体)(1)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.018 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyFlink 1.15 Documentation

    commonly used Python virtual environments on the cluster nodes of the standalone cluster and use custom Python virtual environment when there are some special requirements. Submit PyFlink jobs to a standalone 1.1.1.4 YARN Apache Hadoop YARN is a cluster resource management framework for managing the resources and scheduling jobs in a Hadoop cluster. It’s supported to submit PyFlink jobs to YARN for execution that is, pre-install a few commonly used Python virtual environments on the cluster nodes and use custom Python virtual environment when there are some special requirements. 1.1. Getting Started 9 pyflink-docs
    0 码力 | 36 页 | 266.77 KB | 1 年前
    3
  • pdf文档 PyFlink 1.16 Documentation

    commonly used Python virtual environments on the cluster nodes of the standalone cluster and use custom Python virtual environment when there are some special requirements. Submit PyFlink jobs to a standalone 1.1.1.4 YARN Apache Hadoop YARN is a cluster resource management framework for managing the resources and scheduling jobs in a Hadoop cluster. It’s supported to submit PyFlink jobs to YARN for execution that is, pre-install a few commonly used Python virtual environments on the cluster nodes and use custom Python virtual environment when there are some special requirements. 1.1. Getting Started 9 pyflink-docs
    0 码力 | 36 页 | 266.80 KB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    University 2020 • Change parallelism • scale out to process increased load • scale in to save resources • Fix bugs or change business logic • Optimize execution plan • Change operator placement predict their effects, and decide which and when to apply • Allocate new resources, spawn new processes or release unused resources, safely terminate processes • Adjust dataflow channels and network connections predict their effects, and decide which and when to apply • Allocate new resources, spawn new processes or release unused resources, safely terminate processes • Adjust dataflow channels and network connections
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    minimize disk access • scheduling Objectives • optimize resource utilization or minimize resources • decrease latency, increase throughput • minimize monetary costs (if running in the cloud) Safety • Ensure resource kinds: all resources required by a fused operator should remain available. • Ensure resource amounts: the total amount of resources required by the fused operator must be | Boston University 2020 35 Safety • Ensure resource availability: the host must have enough resources for all assigned operators • Ensure security constraints: what are the trusted hosts for each
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
  • pdf文档 监控Apache Flink应用程序(入门)

    .............................................................................. 22 4.14 System Resources................................................................................................ decreasing the number of task slots per TaskManager (in case of a Standalone setup), by providing more resources to the TaskManager (in case of a containerized setup), or by providing more TaskManagers. In general ease-1.7/monitoring/metrics.html#system-resources 10 https://ci.apache.org/projects/flink/flink-docs-release-1.7/monitoring/metrics.html 4.14 System Resources In addition to the JVM metrics above, it
    0 码力 | 23 页 | 148.62 KB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    file systems, socket connections. 2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources, e.g., user-provided sources. 13 / 79 Input Operations ▶ Every input DStream is associated file systems, socket connections. 2. Advanced sources, e.g., Kafka, Flume, Kinesis, Twitter. 3. Custom sources, e.g., user-provided sources. 13 / 79 Input Operations - Basic Sources ▶ Socket connection quorum], [consumer group id], [number of partitions]) 15 / 79 Input Operations - Custom Sources (1/3) ▶ To create a custom source: extend the Receiver class. ▶ Implement onStart() and onStop(). ▶ Call
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Introduction to Apache Flink and Apache Kafka - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    file:///home/user/wordcount_out 19 Flink commands Vasiliki Kalavri | Boston University 2020 Resources • Documentation • https://flink.apache.org/ • Community • https://flink.apache.org/community failures without losing any records committed to the log. Vasiliki Kalavri | Boston University 2020 Resources • Documentation • https://kafka.apache.org/ • Community • https://kafka.apache.org/contact
    0 码力 | 26 页 | 3.33 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Scale resource allocation: • Addresses the case of increased load and additionally ensures no resources are left idle when the input load decreases. ??? Vasiliki Kalavri | Boston University 2020 Load system processing capacity H: headroom factor, i.e. a conservative estimate of the percentage of resources required by the system at steady state Load(N(I)): the load as a fraction of the total capacity
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Elasticity and state migration: Part I - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    predict their effects, and decide which and when to apply • Allocate new resources, spawn new processes or release unused resources, safely terminate processes • Adjust dataflow channels and network connections
    0 码力 | 93 页 | 2.42 MB | 1 年前
    3
  • pdf文档 Windows and triggers - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    2020 input stream window assigner ... trigger evictor evaluation function result stream Custom windows 20 • Describe each component Vasiliki Kalavri | Boston University 2020 32 4 2 5 7 44 on… Vasiliki Kalavri | Boston University 2020 Advanced transformation functions used to implement custom logic for which predefined windows and transformations might not be suitable: • they provide access
    0 码力 | 35 页 | 444.84 KB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
PyFlink1.15Documentation1.16FaulttolerancedemoreconfigurationCS591K1DataStreamProcessingandAnalyticsSpring2020Streamingoptimizations监控Apache应用程序应用程序入门ScalableSparkIntroductiontoKafkaFlowcontrolloadsheddingElasticitystatemigrationPartWindowstriggers
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩