积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(10)Apache Flink(10)

语言

全部英语(9)中文(简体)(1)

格式

全部PDF文档 PDF(10)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 10 个.
  • 全部
  • 云计算&大数据
  • Apache Flink
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Stream processing fundamentals - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    insertions, updates, deletions of single row or groups of rows Data Stream Management System • continuous queries • sequential data access, high-rate append-only updates Data Warehouse • complex high, bursty Processing Model query-driven / pull-based data-driven / push-based Queries ad-hoc continuous Latency relatively high low 5 Vasiliki Kalavri | Boston University 2020 Traditional DW vs. elasticity 8. Offer low-latency 7 2005 Vasiliki Kalavri | Boston University 2020 actions, alerts continuous analytics … Building a stream processor… 8 ? Vasiliki Kalavri | Boston University 2020 Basic
    0 码力 | 45 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Streaming languages and operator semantics - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Vasiliki Kalavri | Boston University 2020 Vasiliki Kalavri | Boston University 2020 Languages for continuous data processing 2 Vasiliki Kalavri | Boston University 2020 • Transforming languages define 21 Vasiliki Kalavri | Boston University 2020 Non-blocking (monotonic) queries are the only continuous queries that can be supported on data streams. Proposition: Only monotonic queries can be Vasiliki Kalavri | Boston University 2020 Consider a sequence of length n, i.e., S = Sn. If G is a continuous sum, so that it returns the sum of all tuples seen so far: • what is Gj (S) for j < n? • for
    0 码力 | 53 页 | 532.37 KB | 1 年前
    3
  • pdf文档 Stream ingestion and pub/sub systems - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    retrieve the same message - many-to-many communication - message content / structure matters for delivery 8 MB architecture advantages • Multiple producers/consumers as concurrent clients • Effective depend on a snapshot and clients are not notified if their query result changes later. 13 Message delivery and ordering Acknowledgements are messages from the client to the broker indicating that the client processing a message • If an acknowledgement is not received, delivery is retried • Re-delivery might cause re-ordering of messages • Re-delivery complicates stream processing and fault-tolerance • might
    0 码力 | 33 页 | 700.14 KB | 1 年前
    3
  • pdf文档 Apache Flink的过去、现在和未来

    超万台 状态数据 PetaBytes 事件处理 十万亿/天 峰值能力 17亿/秒 Flink 的过去 offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ 现在 Flink 1.9 的架构变化 Runtime Distributed Manager 生态 Flink Hive Flink Zeppelin 中文社区 Flink 的现在 offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ ✔ 未来 Micro Services O_0 O_1 Call Auto Scale State Management Event Driven Flink 的未来 offline Real-time Batch Processing Continuous Processing & Streaming Analytics Event-driven Applications ✔ ✔ ✔ 扫码加入社群 与志同道合的码友一起 Code Up
    0 码力 | 33 页 | 3.36 MB | 1 年前
    3
  • pdf文档 Scalable Stream Processing - Spark Streaming and Flink

    https://id2221kth.github.io 1 / 79 Where Are We? 2 / 79 Stream Processing Systems Design Issues ▶ Continuous vs. micro-batch processing ▶ Record-at-a-Time vs. declarative APIs 3 / 79 Outline ▶ Spark streaming streaming ▶ Flink 4 / 79 Spark Streaming 5 / 79 Contribution ▶ Design issues • Continuous vs. micro-batch processing • Record-at-a-Time vs. declarative APIs 6 / 79 Spark Streaming ▶ Run a streaming real-time stream and batch processing ▶ Process unbounded and bounded Data ▶ Design issues • Continuous vs. micro-batch processing • Record-at-a-Time vs. declarative APIs 69 / 79 Programs and Dataflows
    0 码力 | 113 页 | 1.22 MB | 1 年前
    3
  • pdf文档 Course introduction - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Fault-tolerance & high-availability Vasiliki Kalavri | Boston University 2020 actions, alerts continuous analytics … Building a stream processor… 33 ? Vasiliki Kalavri | Boston University 2020 Optional
    0 码力 | 34 页 | 2.53 MB | 1 年前
    3
  • pdf文档 Fault-tolerance demo & reconfiguration - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    introducing load imbalance • Resource management • utilization, isolation • Automation • continuous monitoring • bottleneck detection • stability, accuracy 11 Challenges of reconfiguration
    0 码力 | 41 页 | 4.09 MB | 1 年前
    3
  • pdf文档 Flow control and load shedding - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    Manager Scheduler QoS Monitor Load Shedder Query Execution Engine Qm Q2 Q1 Ad-hoc or continuous queries Input streams … ??? Vasiliki Kalavri | Boston University 2020 Load shedding decisions
    0 码力 | 43 页 | 2.42 MB | 1 年前
    3
  • pdf文档 High-availability, recovery semantics, and guarantees - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    the system ensures retrying even if the sender crashes • this technique guarantees at-least-once delivery RPC retries might create duplicates • RPCs can sometimes succeed even if they appear to have
    0 码力 | 49 页 | 2.08 MB | 1 年前
    3
  • pdf文档 Streaming optimizations - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    operators maintain state that reflect part of the stream history they have seen • windows, continuous aggregations, distinct… • State is commonly partitioned by key • State can be cleared based
    0 码力 | 54 页 | 2.83 MB | 1 年前
    3
共 10 条
  • 1
前往
页
相关搜索词
StreamprocessingfundamentalsCS591K1DataProcessingandAnalyticsSpring2020StreaminglanguagesoperatorsemanticsingestionpubsubsystemsApacheFlink过去现在未来ScalableSparkCourseintroductionFaulttolerancedemoreconfigurationFlowcontrolloadsheddingHighavailabilityrecoveryguaranteesoptimizations
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩