 Greenplum数据仓库UDW - UCloud中立云计算服务商产品架构 Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 7/206 1. Client:访问 UDW 的客⼾端 ⽀持通过 JDBC、ODBC、PHP、Python、命令⾏ Sql 等⽅式访问 UDW 2. Master Node:访问 UDW 数据仓库的⼊⼝ 接收客⼾端的连接请求 负责权限认证 处理 SQL 命令 调度分发执⾏计划 汇总 Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 17/206 yum install postgresql-jdbc.noarch –y Windows 环境下 JDBC 驱动,将 jar 添加到⼯程的 BUILD PATH。 ⽰例程序1,java连接UDW,执⾏建表,插⼊操作 PostgreSQLJDBC1.java import java.sql = ", row[3], "\n" print "Operation done successfully"; conn.close() 3.php客⼾端 yum install php-pgsql ⽰例1. 连接 conn.php php $host = "host=hostIP"; $port = "port=port"; $dbname = "dbname=dbname";0 码力 | 206 页 | 5.35 MB | 1 年前3 Greenplum数据仓库UDW - UCloud中立云计算服务商产品架构 Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 7/206 1. Client:访问 UDW 的客⼾端 ⽀持通过 JDBC、ODBC、PHP、Python、命令⾏ Sql 等⽅式访问 UDW 2. Master Node:访问 UDW 数据仓库的⼊⼝ 接收客⼾端的连接请求 负责权限认证 处理 SQL 命令 调度分发执⾏计划 汇总 Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 17/206 yum install postgresql-jdbc.noarch –y Windows 环境下 JDBC 驱动,将 jar 添加到⼯程的 BUILD PATH。 ⽰例程序1,java连接UDW,执⾏建表,插⼊操作 PostgreSQLJDBC1.java import java.sql = ", row[3], "\n" print "Operation done successfully"; conn.close() 3.php客⼾端 yum install php-pgsql ⽰例1. 连接 conn.php php $host = "host=hostIP"; $port = "port=port"; $dbname = "dbname=dbname";0 码力 | 206 页 | 5.35 MB | 1 年前3
 Greenplum 新一代数据管理和数据分析解决方案数据规模 • 20TB,每天增长400GB • 优势 • 将响应时间缩短90% “借助运行Greenplum数据引擎的Sun数据仓库设备,Reliance可以在快速发展,用户需求不断增加 的数据环境中达到预期的高度响应能力。” - Reliance 的副总裁和主管(决策支持系统)Raj Joshi 25 响应时间 (分) 以前的数据库 客户实例: PLDT • 业务问题 CDR分析 X4600一台,4路dual-core CPU 共8core,32GB – 存储平台:NetApp一台 – 网络平台:千兆网络 – 软件平台:RedHat linux + mysql – 应用软件:基于Apache的PHP程序 • 现有运行现状 – 随着数据量的不断增长,应用在现有平台上的运行效率极度恶化。 – 实际运行采样,9月份月度数据处理时,该应用耗时42小时;经过两个月 的数据累加,到11月份月度数据处理时,该应用耗时达到65小时。 全表扫描测试 – DWA测试环境:针对表C(372844366 rows)进行全表扫描,历时少于1.5 分钟。 – 客户投产环境:针对表C的一个子表(记录数约为C表的1/10) 进行全表扫 描,历时超过20分钟。 结论:如果采用DWA替代现有环境,获得超过120倍的性能提升。 • 真实应用测试 – DWA测试结果:完成应用的全过程仅耗时48分钟。 – 客户投产环境:客户11月份月度处理时,完成本项任务需要65小时。0 码力 | 45 页 | 2.07 MB | 1 年前3 Greenplum 新一代数据管理和数据分析解决方案数据规模 • 20TB,每天增长400GB • 优势 • 将响应时间缩短90% “借助运行Greenplum数据引擎的Sun数据仓库设备,Reliance可以在快速发展,用户需求不断增加 的数据环境中达到预期的高度响应能力。” - Reliance 的副总裁和主管(决策支持系统)Raj Joshi 25 响应时间 (分) 以前的数据库 客户实例: PLDT • 业务问题 CDR分析 X4600一台,4路dual-core CPU 共8core,32GB – 存储平台:NetApp一台 – 网络平台:千兆网络 – 软件平台:RedHat linux + mysql – 应用软件:基于Apache的PHP程序 • 现有运行现状 – 随着数据量的不断增长,应用在现有平台上的运行效率极度恶化。 – 实际运行采样,9月份月度数据处理时,该应用耗时42小时;经过两个月 的数据累加,到11月份月度数据处理时,该应用耗时达到65小时。 全表扫描测试 – DWA测试环境:针对表C(372844366 rows)进行全表扫描,历时少于1.5 分钟。 – 客户投产环境:针对表C的一个子表(记录数约为C表的1/10) 进行全表扫 描,历时超过20分钟。 结论:如果采用DWA替代现有环境,获得超过120倍的性能提升。 • 真实应用测试 – DWA测试结果:完成应用的全过程仅耗时48分钟。 – 客户投产环境:客户11月份月度处理时,完成本项任务需要65小时。0 码力 | 45 页 | 2.07 MB | 1 年前3
 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum................................................................................... 8 以开源创新替代专有分析环境 .................................................................................................. 解决方案,可部署在不同操作系统、 不同芯片的环境,适合本地部署、多云环境(公有云和私有云)中。Greenplum 6 及未来发布的 Greenplum 7 丰富的 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 欧拉开源 繁荣社区生态 友好卓面环境:UKUDDEXfce 卓面环境,丰富社区卓面环境生态。 • 欧拉 DevKit:支持操作系统迁移、兼容性评估、简化安全配置 secPaver 等更多开发工具。 Greenplum:新一代 HTAP 数据平台 Greenplum 自 2006 年发布第一个版本以来,就以精巧架构、简单易用、运行稳定、优异性能、环境适应性强在 MPP 数据库领域独占鳌头,基于0 码力 | 17 页 | 2.04 MB | 1 年前3 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum................................................................................... 8 以开源创新替代专有分析环境 .................................................................................................. 解决方案,可部署在不同操作系统、 不同芯片的环境,适合本地部署、多云环境(公有云和私有云)中。Greenplum 6 及未来发布的 Greenplum 7 丰富的 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 欧拉开源 繁荣社区生态 友好卓面环境:UKUDDEXfce 卓面环境,丰富社区卓面环境生态。 • 欧拉 DevKit:支持操作系统迁移、兼容性评估、简化安全配置 secPaver 等更多开发工具。 Greenplum:新一代 HTAP 数据平台 Greenplum 自 2006 年发布第一个版本以来,就以精巧架构、简单易用、运行稳定、优异性能、环境适应性强在 MPP 数据库领域独占鳌头,基于0 码力 | 17 页 | 2.04 MB | 1 年前3
 Greenplum Database 管理员指南 6.2.1........................................................................... - 288 - 为 gpadmin 用户配置环境变量 ................................................................................... - 290 - 第十三章:启动与停止 $ PGOPTIONS='-c gp_session_role=utility' psql 在 GP 推荐的硬件配置环境下,每个 Instance 需要对应数个 CPU Core 的资源 资源,具体的比例需要根据数据库的适用场景进行综合评估。例如在生产环境,每个 Instance 所在的主机配置了 2 个 16 Core 的 CPU,可根据不同的场景,配置 4 ~ 12 个不等的 P 协议相似,但其性能和扩展性远好于 TCP 协议。当集群规模较小,同时,网络的稳定性较差的时候,如果 UDPIFC 协议不 稳定,可以考虑使用 TCP 协议,例如只有几十台主机时。通常,还是强烈建议配备稳 定的网络环境,使用 UDPIFC 协议。 冗余与故障切换 GP 提供了避免单点故障的部署选项。本节讲述 GP 的冗余组件。  Instance 镜像  Master0 码力 | 416 页 | 6.08 MB | 1 年前3 Greenplum Database 管理员指南 6.2.1........................................................................... - 288 - 为 gpadmin 用户配置环境变量 ................................................................................... - 290 - 第十三章:启动与停止 $ PGOPTIONS='-c gp_session_role=utility' psql 在 GP 推荐的硬件配置环境下,每个 Instance 需要对应数个 CPU Core 的资源 资源,具体的比例需要根据数据库的适用场景进行综合评估。例如在生产环境,每个 Instance 所在的主机配置了 2 个 16 Core 的 CPU,可根据不同的场景,配置 4 ~ 12 个不等的 P 协议相似,但其性能和扩展性远好于 TCP 协议。当集群规模较小,同时,网络的稳定性较差的时候,如果 UDPIFC 协议不 稳定,可以考虑使用 TCP 协议,例如只有几十台主机时。通常,还是强烈建议配备稳 定的网络环境,使用 UDPIFC 协议。 冗余与故障切换 GP 提供了避免单点故障的部署选项。本节讲述 GP 的冗余组件。  Instance 镜像  Master0 码力 | 416 页 | 6.08 MB | 1 年前3
 Pivotal Greenplum 5: 新一代数据平台.....................................................................................3 以开源创新替代专有分析环境 .................................................................................................. Pivotal Greenplum 不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在多云环境(公 有云和私有云)中,也适用不同的本地配置。其大规模并行处理 (MPP) SQL 的设计核心是一个称为 GPORCA 的新一代查 询优化器。GPORCA 专为满足在多结构数据环境中进行高级分析的需求而设计,能够处理多种并发混合工作负载的复杂查 询。与旧式 MPP 数据库中常用的传统 RDBMS Pivotal Software, Inc.保留所有权利。 PIVOTAL GREENPLUM 5:新一代数据平台 图 1:Pivotal Greenplum 5:新一代数据平台。 以开源创新替代专有分析环境 为了支持 Greenplum 的后续发展,Pivotal 于 2015 年决定将其产品 Greenplum Database 开源。由此产生的最积极结果是 Greenplum Database0 码力 | 9 页 | 690.33 KB | 1 年前3 Pivotal Greenplum 5: 新一代数据平台.....................................................................................3 以开源创新替代专有分析环境 .................................................................................................. Pivotal Greenplum 不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在多云环境(公 有云和私有云)中,也适用不同的本地配置。其大规模并行处理 (MPP) SQL 的设计核心是一个称为 GPORCA 的新一代查 询优化器。GPORCA 专为满足在多结构数据环境中进行高级分析的需求而设计,能够处理多种并发混合工作负载的复杂查 询。与旧式 MPP 数据库中常用的传统 RDBMS Pivotal Software, Inc.保留所有权利。 PIVOTAL GREENPLUM 5:新一代数据平台 图 1:Pivotal Greenplum 5:新一代数据平台。 以开源创新替代专有分析环境 为了支持 Greenplum 的后续发展,Pivotal 于 2015 年决定将其产品 Greenplum Database 开源。由此产生的最积极结果是 Greenplum Database0 码力 | 9 页 | 690.33 KB | 1 年前3
 Greenplum 精粹文集在数据加载和数 据计算中表现出强悍的性能,某行业客户对此深有体会 : 同样 2TB 左 右的数据,在 Greenplum 中不到一个小时就加载完成了,而在用户传 统数据仓库平台上耗时半天以上。 在该用户的生产环境中,1 个数百亿表和 2 个 10 多亿条记录表的全表 关联中(只有 on 关联条件,不带 where 过滤条件,其中一个 10 亿 条的表计算中需要重分布),Greenplum 仅耗时数分钟就完成了, CPU core 的 计算能力,还不如关掉超线程以提高单 core 的能力),但即使是这样, 在那个测试中,测试性能也大幅低于 Greenplum(那个测试中,各厂 商基于客户提供的完全相同的硬件环境,Greenplum 是唯一一家完成 所有测试的,特别在混合负载测试中,Greenplum 的 80 并发耗时 3 个多小时就成功完成了,其它厂商大都没有完成此项测试,唯一完成 的一家耗时 40 多小时)。 与客户一起开拓大数 据之路。 在国内某大型金融机构的大数据处理平台,使用 Greenplum 数据库产 品支撑其 ODS 及各类集市应用。项目从 2013 年 6 月份开始到 2015 年底,生产环境已经由最初的一套集群发展到 10 多套, 装机数量也 从最初的 50 台发展到现在的数百台。短短两年半时间, 服务器数量、 集群数量、支撑的应用数量都飞速增长。 Big Date2.indd 200 码力 | 64 页 | 2.73 MB | 1 年前3 Greenplum 精粹文集在数据加载和数 据计算中表现出强悍的性能,某行业客户对此深有体会 : 同样 2TB 左 右的数据,在 Greenplum 中不到一个小时就加载完成了,而在用户传 统数据仓库平台上耗时半天以上。 在该用户的生产环境中,1 个数百亿表和 2 个 10 多亿条记录表的全表 关联中(只有 on 关联条件,不带 where 过滤条件,其中一个 10 亿 条的表计算中需要重分布),Greenplum 仅耗时数分钟就完成了, CPU core 的 计算能力,还不如关掉超线程以提高单 core 的能力),但即使是这样, 在那个测试中,测试性能也大幅低于 Greenplum(那个测试中,各厂 商基于客户提供的完全相同的硬件环境,Greenplum 是唯一一家完成 所有测试的,特别在混合负载测试中,Greenplum 的 80 并发耗时 3 个多小时就成功完成了,其它厂商大都没有完成此项测试,唯一完成 的一家耗时 40 多小时)。 与客户一起开拓大数 据之路。 在国内某大型金融机构的大数据处理平台,使用 Greenplum 数据库产 品支撑其 ODS 及各类集市应用。项目从 2013 年 6 月份开始到 2015 年底,生产环境已经由最初的一套集群发展到 10 多套, 装机数量也 从最初的 50 台发展到现在的数百台。短短两年半时间, 服务器数量、 集群数量、支撑的应用数量都飞速增长。 Big Date2.indd 200 码力 | 64 页 | 2.73 MB | 1 年前3
 并行不悖- OLAP 在互联网公司的实践与思考12台虚拟机,39台物理机 17 Greenplum现状说明 三大Greenplum集群定位分类 • 公司IDC_01机房Greenplum体系 Ø 公司第一套Greenplum集群,网络环境为千兆网 Ø 数据来源为OLTP库,针对小数据量传输和计算,部分实时交互操作 Ø 以对账业务为主,统计计算为辅 • 公司IDC_02机房Greenplum体系 Ø 针对数据来源主要是kfk产生csv文件的业务,不直接从数据库传数 Greenplum扩展规划 六 22 Greenplum运维体系 环境创建与部署 • 部署流程 Ø 规划部署方案 Ø 准备硬件资源 Ø 修改系统参数 Ø 安装 Greenplum 软件 / postgresql软件 Ø 初始化实例 Ø 修改实例参数文件 Ø 初始化业务所需库表环境、用户环境 Ø 加载数据 Ø 业务程序访问 23 Greenplum运维体系 环境创建与部署 • 部署注意点 Ø 资源要充足(ETL,管理节点,数据节点,数据集市) 资源要充足(ETL,管理节点,数据节点,数据集市) Ø 万兆网络 (网络环境对功能和性能的影响) Ø 节点规划 (数据节点6-10个segment节点) Ø 参数调整 (操作系统参数,greenplum集群参数) 24 Greenplum运维体系 系统状态监控 - gpcc -公司IDC_01机房 25 Greenplum运维体系 系统状态监控 - gpcc -公司IDC_02 机房 26 Greenplum运维体系0 码力 | 43 页 | 9.66 MB | 1 年前3 并行不悖- OLAP 在互联网公司的实践与思考12台虚拟机,39台物理机 17 Greenplum现状说明 三大Greenplum集群定位分类 • 公司IDC_01机房Greenplum体系 Ø 公司第一套Greenplum集群,网络环境为千兆网 Ø 数据来源为OLTP库,针对小数据量传输和计算,部分实时交互操作 Ø 以对账业务为主,统计计算为辅 • 公司IDC_02机房Greenplum体系 Ø 针对数据来源主要是kfk产生csv文件的业务,不直接从数据库传数 Greenplum扩展规划 六 22 Greenplum运维体系 环境创建与部署 • 部署流程 Ø 规划部署方案 Ø 准备硬件资源 Ø 修改系统参数 Ø 安装 Greenplum 软件 / postgresql软件 Ø 初始化实例 Ø 修改实例参数文件 Ø 初始化业务所需库表环境、用户环境 Ø 加载数据 Ø 业务程序访问 23 Greenplum运维体系 环境创建与部署 • 部署注意点 Ø 资源要充足(ETL,管理节点,数据节点,数据集市) 资源要充足(ETL,管理节点,数据节点,数据集市) Ø 万兆网络 (网络环境对功能和性能的影响) Ø 节点规划 (数据节点6-10个segment节点) Ø 参数调整 (操作系统参数,greenplum集群参数) 24 Greenplum运维体系 系统状态监控 - gpcc -公司IDC_01机房 25 Greenplum运维体系 系统状态监控 - gpcc -公司IDC_02 机房 26 Greenplum运维体系0 码力 | 43 页 | 9.66 MB | 1 年前3
 Greenplum 编译安装和调试2.1 手工集群初始化 下面介绍如何手工部署一个单机集群:在一台笔记本上安装一个Greenplum的集群,包括一个 master,两个segments。 # step 0. 系统环境配置 $ /etc/sysctl.conf kernel.shmmax = 500000000 kernel.shmmni = 4096 kernel.shmall = 4000000000 * hard nofile 65536 * soft nproc 131072 * hard nproc 131072 $ sudo reboot # step 1. source一些环境变量, 例如PATH $ source $HOME/gpdb.master/greenplum_path.sh # step 2. 交换集群中所有机器的ssh密钥, 我们这里只有一台机器 segment 时出错,并且看不到具体错误信息(通常由于错误信息被重定向到 /dev/null 了),则可以尝试手动启动 segment。 手动启动segment的命令参加下面,需要根据自己的环境修改某些路径或者参数: export LD_LIBRARY_PATH=/home/gpadmin/build/gpdb.master/lib:/lib:;export0 码力 | 15 页 | 2.07 MB | 1 年前3 Greenplum 编译安装和调试2.1 手工集群初始化 下面介绍如何手工部署一个单机集群:在一台笔记本上安装一个Greenplum的集群,包括一个 master,两个segments。 # step 0. 系统环境配置 $ /etc/sysctl.conf kernel.shmmax = 500000000 kernel.shmmni = 4096 kernel.shmall = 4000000000 * hard nofile 65536 * soft nproc 131072 * hard nproc 131072 $ sudo reboot # step 1. source一些环境变量, 例如PATH $ source $HOME/gpdb.master/greenplum_path.sh # step 2. 交换集群中所有机器的ssh密钥, 我们这里只有一台机器 segment 时出错,并且看不到具体错误信息(通常由于错误信息被重定向到 /dev/null 了),则可以尝试手动启动 segment。 手动启动segment的命令参加下面,需要根据自己的环境修改某些路径或者参数: export LD_LIBRARY_PATH=/home/gpadmin/build/gpdb.master/lib:/lib:;export0 码力 | 15 页 | 2.07 MB | 1 年前3
 Greenplum 介绍、去哪儿 网、易观、腾云科技、饿了么、金风科技在内大量开源用户。 Greenplum 大数据平台的优势 ● 一次打包到处运行的平台:部署灵活,不受限于硬件环境和平台,无论裸机、私有云、公 有云均可部署。硬件环境的普适性,提供了极大的灵活性,解放了硬件平台的制约和绑定, 从而允许客户灵活选择最适合的方案,降低未来的迁移代价,而开发、运维人员无需要学 习新的数据库处理技术,人力成本也能够大大降低。0 码力 | 3 页 | 220.42 KB | 1 年前3 Greenplum 介绍、去哪儿 网、易观、腾云科技、饿了么、金风科技在内大量开源用户。 Greenplum 大数据平台的优势 ● 一次打包到处运行的平台:部署灵活,不受限于硬件环境和平台,无论裸机、私有云、公 有云均可部署。硬件环境的普适性,提供了极大的灵活性,解放了硬件平台的制约和绑定, 从而允许客户灵活选择最适合的方案,降低未来的迁移代价,而开发、运维人员无需要学 习新的数据库处理技术,人力成本也能够大大降低。0 码力 | 3 页 | 220.42 KB | 1 年前3
 Pivotal HVR meetup 20190816Migrations Disaster Recovery 6 扩展性—高性能架构 7 • 创建并装载目标表 • 用于实时复制的初始化 • 也可以单独使用 • 可以被定义为任务,定时调度执行 异构平台环境下初始化同步 8 • 非侵入式技术对生产没有影响 • 基于日志捕获技术的实时性非常高 • 支持从过去的某一指定时间开始捕获 • 条件过滤 • 支持触发器捕获技术作为补充 基于数据库事务日志的变化数据捕获 Products 参考:https://mp.weixin.qq.com/s/zgCfcbMKOJRYROdxjW6RNA 18 Compare Products ➢ 案例需求全部满足 ➢ 生产环境实验同步 ➢ 支持全量同步、增量实时同步,无延时 ➢ 支持多种数据同构、异构数据同步 ➢ 过滤器制作规则处理异常数据 ➢ 可以达到BI系统的实时要求 ➢ 网络带宽利用率低,且支持数据的安全传输0 码力 | 31 页 | 2.19 MB | 1 年前3 Pivotal HVR meetup 20190816Migrations Disaster Recovery 6 扩展性—高性能架构 7 • 创建并装载目标表 • 用于实时复制的初始化 • 也可以单独使用 • 可以被定义为任务,定时调度执行 异构平台环境下初始化同步 8 • 非侵入式技术对生产没有影响 • 基于日志捕获技术的实时性非常高 • 支持从过去的某一指定时间开始捕获 • 条件过滤 • 支持触发器捕获技术作为补充 基于数据库事务日志的变化数据捕获 Products 参考:https://mp.weixin.qq.com/s/zgCfcbMKOJRYROdxjW6RNA 18 Compare Products ➢ 案例需求全部满足 ➢ 生产环境实验同步 ➢ 支持全量同步、增量实时同步,无延时 ➢ 支持多种数据同构、异构数据同步 ➢ 过滤器制作规则处理异常数据 ➢ 可以达到BI系统的实时要求 ➢ 网络带宽利用率低,且支持数据的安全传输0 码力 | 31 页 | 2.19 MB | 1 年前3
共 24 条
- 1
- 2
- 3













