 VMware Greenplum 7 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates found in stdlib jaraco.text Module for text manipulation Jinja2 A very fast and expressive template engine joblib Lightweight pipelining with Python functions keras Deep learning for humans Keras- Preprocessing swap. Supported. Can directly detach a partition, retaining the table contents. Sub-partition templating Supported. The definitions of the parent and child tables are consistent by default. Not supported0 码力 | 2221 页 | 14.19 MB | 1 年前3 VMware Greenplum 7 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates found in stdlib jaraco.text Module for text manipulation Jinja2 A very fast and expressive template engine joblib Lightweight pipelining with Python functions keras Deep learning for humans Keras- Preprocessing swap. Supported. Can directly detach a partition, retaining the table contents. Sub-partition templating Supported. The definitions of the parent and child tables are consistent by default. Not supported0 码力 | 2221 页 | 14.19 MB | 1 年前3
 Greenplum 新一代数据管理和数据分析解决方案最先将SQL和Map-Reduce的功能整合到统一的数 据处理框架中 • 可以帮助企业采集所有数据,并在竞争中获得出色 的洞察力 41 Parallel Dataflow Engine • General purpose parallel-dataflow engine natively executes SQL & MapReduce • Optimized for commodity compute, storage FC connected storage Local compute Local storage gNet Interconnect Greenplum Parallel Dataflow Engine gNet Software Interconnect • Supercomputing-based “soft switch” interconnect • Utilizes commodity systems 2) Gather Phase • Transformation in flight using SQL • Fully pipelined parallel dataflow engine ensures maximum throughput • Automatic partitioning of storage across segments • Optional compression0 码力 | 45 页 | 2.07 MB | 1 年前3 Greenplum 新一代数据管理和数据分析解决方案最先将SQL和Map-Reduce的功能整合到统一的数 据处理框架中 • 可以帮助企业采集所有数据,并在竞争中获得出色 的洞察力 41 Parallel Dataflow Engine • General purpose parallel-dataflow engine natively executes SQL & MapReduce • Optimized for commodity compute, storage FC connected storage Local compute Local storage gNet Interconnect Greenplum Parallel Dataflow Engine gNet Software Interconnect • Supercomputing-based “soft switch” interconnect • Utilizes commodity systems 2) Gather Phase • Transformation in flight using SQL • Fully pipelined parallel dataflow engine ensures maximum throughput • Automatic partitioning of storage across segments • Optional compression0 码力 | 45 页 | 2.07 MB | 1 年前3
 VMware Greenplum 6 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates Applications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions Joblib Python functions as pipeline jobs jsonschema JSON Schema found in stdlib jaraco.text Module for text manipulation Jinja2 A very fast and expressive template engine joblib Lightweight pipelining with Python functions keras Deep learning for humans Keras- Preprocessing0 码力 | 2445 页 | 18.05 MB | 1 年前3 VMware Greenplum 6 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates Applications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions Joblib Python functions as pipeline jobs jsonschema JSON Schema found in stdlib jaraco.text Module for text manipulation Jinja2 A very fast and expressive template engine joblib Lightweight pipelining with Python functions keras Deep learning for humans Keras- Preprocessing0 码力 | 2445 页 | 18.05 MB | 1 年前3
 VMware Greenplum 6 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates Applications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions Joblib Python functions as pipeline jobs jsonschema JSON Schema found in stdlib jaraco.text Module for text manipulation Jinja2 A very fast and expressive template engine joblib Lightweight pipelining with Python functions keras Deep learning for humans Keras- Preprocessing0 码力 | 2374 页 | 44.90 MB | 1 年前3 VMware Greenplum 6 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates Applications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions Joblib Python functions as pipeline jobs jsonschema JSON Schema found in stdlib jaraco.text Module for text manipulation Jinja2 A very fast and expressive template engine joblib Lightweight pipelining with Python functions keras Deep learning for humans Keras- Preprocessing0 码力 | 2374 页 | 44.90 MB | 1 年前3
 VMware Tanzu Greenplum v6.23 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates Applications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions Joblib Python functions as pipeline jobs jsonschema JSON Schema found in stdlib jaraco.text Module for text manipulation Jinja2 A very fast and expressive template engine joblib Lightweight pipelining with Python functions keras Deep learning for humans Keras- Preprocessing0 码力 | 2298 页 | 40.94 MB | 1 年前3 VMware Tanzu Greenplum v6.23 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates Applications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions Joblib Python functions as pipeline jobs jsonschema JSON Schema found in stdlib jaraco.text Module for text manipulation Jinja2 A very fast and expressive template engine joblib Lightweight pipelining with Python functions keras Deep learning for humans Keras- Preprocessing0 码力 | 2298 页 | 40.94 MB | 1 年前3
 VMware Greenplum v6.25 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates Applications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions Joblib Python functions as pipeline jobs jsonschema JSON Schema found in stdlib jaraco.text Module for text manipulation Jinja2 A very fast and expressive template engine joblib Lightweight pipelining with Python functions keras Deep learning for humans Keras- Preprocessing0 码力 | 2400 页 | 18.02 MB | 1 年前3 VMware Greenplum v6.25 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates Applications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions Joblib Python functions as pipeline jobs jsonschema JSON Schema found in stdlib jaraco.text Module for text manipulation Jinja2 A very fast and expressive template engine joblib Lightweight pipelining with Python functions keras Deep learning for humans Keras- Preprocessing0 码力 | 2400 页 | 18.02 MB | 1 年前3
 Greenplum 5.0 and RoadmapHeritage Greenplum Open Source Launch • Widely used • Open Source • Enterprise class relational engine 2016Postgres中国用户大会 Postgres Conference China 2016 中国用户大会 PostgreSQL Base Vision Greenplum in0 码力 | 27 页 | 2.66 MB | 1 年前3 Greenplum 5.0 and RoadmapHeritage Greenplum Open Source Launch • Widely used • Open Source • Enterprise class relational engine 2016Postgres中国用户大会 Postgres Conference China 2016 中国用户大会 PostgreSQL Base Vision Greenplum in0 码力 | 27 页 | 2.66 MB | 1 年前3
 VMware Tanzu Greenplum 6 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates Applications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions VMware Tanzu Greenplum 6 Documentation VMware, Inc. 423 Module found in stdlib jaraco.text Module for text manipulation Jinja2 A very fast and expressive template engine joblib Lightweight pipelining with Python functions keras Deep learning for humans Keras- Preprocessing0 码力 | 2311 页 | 17.58 MB | 1 年前3 VMware Tanzu Greenplum 6 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates Applications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions VMware Tanzu Greenplum 6 Documentation VMware, Inc. 423 Module found in stdlib jaraco.text Module for text manipulation Jinja2 A very fast and expressive template engine joblib Lightweight pipelining with Python functions keras Deep learning for humans Keras- Preprocessing0 码力 | 2311 页 | 17.58 MB | 1 年前3
 VMware Tanzu Greenplum v6.21 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates Applications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions Joblib Python functions as pipeline jobs jsonschema JSON Schema the logic to invoke the STX transformation and return the output. If Joost is used, the Joost STX engine must be installed. #!/bin/bash # input_transform.sh - sample input transformation, # demonstrating0 码力 | 2025 页 | 33.54 MB | 1 年前3 VMware Tanzu Greenplum v6.21 Documentationnow in standard PostgreSQL. Greenplum Database queries use a Volcano-style query engine model, where the execution engine takes an execution plan and uses it to generate a tree of physical operators, evaluates Applications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions Joblib Python functions as pipeline jobs jsonschema JSON Schema the logic to invoke the STX transformation and return the output. If Joost is used, the Joost STX engine must be installed. #!/bin/bash # input_transform.sh - sample input transformation, # demonstrating0 码力 | 2025 页 | 33.54 MB | 1 年前3
 VMware Greenplum v6.18 DocumentationApplications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions Joblib Python functions as pipeline jobs jsonschema JSON Schema isolating executors from the host OS. Greenplum PL/Container implements a trusted language execution engine which permits customized data science workloads or environments created for different end user workloads MADlib FAQ. MADlib’s suite of SQL-based algorithms run at scale within a single Greenplum Database engine without needing to transfer data between the database and other tools. VMware Greenplum v6.18 Documentation0 码力 | 1959 页 | 19.73 MB | 1 年前3 VMware Greenplum v6.18 DocumentationApplications (IDNA) importlib-metadata Read metadata from Python packages Jinja2 Stand-alone template engine JMESPath JSON Matching Expressions Joblib Python functions as pipeline jobs jsonschema JSON Schema isolating executors from the host OS. Greenplum PL/Container implements a trusted language execution engine which permits customized data science workloads or environments created for different end user workloads MADlib FAQ. MADlib’s suite of SQL-based algorithms run at scale within a single Greenplum Database engine without needing to transfer data between the database and other tools. VMware Greenplum v6.18 Documentation0 码力 | 1959 页 | 19.73 MB | 1 年前3
共 14 条
- 1
- 2













