 Greenplum Database 管理员指南 6.2.1文件 ....................................................................................... - 35 - 限制并发连接数量 .............................................................................................. .................................................................................. - 168 - 关于 GP 的并发控制 ................................................................................................ ................... - 295 - 第十四章:开启高可用 .......................................................................................................... - 297 - GP 数据库高可用概述 ................................0 码力 | 416 页 | 6.08 MB | 1 年前3 Greenplum Database 管理员指南 6.2.1文件 ....................................................................................... - 35 - 限制并发连接数量 .............................................................................................. .................................................................................. - 168 - 关于 GP 的并发控制 ................................................................................................ ................... - 295 - 第十四章:开启高可用 .......................................................................................................... - 297 - GP 数据库高可用概述 ................................0 码力 | 416 页 | 6.08 MB | 1 年前3
 Greenplum 精粹文集模式就是可以支持 Scale-out 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 时是千兆以太网)组建的 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce google、yahoo、ibm 和 TD),说干就干,花了一年多的时间 完成最初的版本设计和开发,用软件实现了在开放 X86 平台上的分布 式并行计算,不依赖于任何专有硬件,达到的性能却远远超过传统高 昂的专有系统。 Big Date2.indd 2 16-11-22 下午3:38 Greenplum 精粹文集 3 大家都知道 Greenplum 的数据库引擎层是基于著名的开源数据库 hash join 是必备的利器,缺少这些关键功能非常致命,将难于在 OLAP 领域充当大任。我们最近对基于 MYSQL 的某内存分布式数据库做 对比测试时,发现其优点是 OLTP 非常快,TPS 非常高(轻松搞定 几十万),但一到复杂多表关联性能就立马下降,即使其具有内存 计算的功能也无能为力,就其因估计还是受到 mysql 在这方面限制。 3) 扩展性方面,Postgresql 比 mysql 也要出色许多,Postgres0 码力 | 64 页 | 2.73 MB | 1 年前3 Greenplum 精粹文集模式就是可以支持 Scale-out 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 时是千兆以太网)组建的 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce google、yahoo、ibm 和 TD),说干就干,花了一年多的时间 完成最初的版本设计和开发,用软件实现了在开放 X86 平台上的分布 式并行计算,不依赖于任何专有硬件,达到的性能却远远超过传统高 昂的专有系统。 Big Date2.indd 2 16-11-22 下午3:38 Greenplum 精粹文集 3 大家都知道 Greenplum 的数据库引擎层是基于著名的开源数据库 hash join 是必备的利器,缺少这些关键功能非常致命,将难于在 OLAP 领域充当大任。我们最近对基于 MYSQL 的某内存分布式数据库做 对比测试时,发现其优点是 OLTP 非常快,TPS 非常高(轻松搞定 几十万),但一到复杂多表关联性能就立马下降,即使其具有内存 计算的功能也无能为力,就其因估计还是受到 mysql 在这方面限制。 3) 扩展性方面,Postgresql 比 mysql 也要出色许多,Postgres0 码力 | 64 页 | 2.73 MB | 1 年前3
 Pivotal Greenplum 最佳实践分享节点一般配置4~8个Instance,初始化完成后很 难修改,需要提前规划; • 每个Instance都是一套独立的进程,当客户端 发起一个请求时,每个Instance都将FORK子进 程并行工作; • 对于并发请求高、面向于复杂的灵活查询的系 统,建议每个Segment配置4个或以下Instance, 这样来保证每个Instance所需资源,保证系统 系统运行稳定性,例如,减少OOM发生的概率; • 对于以批处理、串行工作为主的系统,可以配 对于少数频繁查询的宽表,例如交易表、帐户表、客户表等采用列存储,其它表采用行存储 数据压缩: • 在金融业,行压缩的数据压缩比在1:6左右,一般采用zlib5级压缩 • 数据压缩对于高并发查询分析系统可以大幅降低IO消耗,提升并行处理、混合负载的性能 分布键使用: • 尽量采用一个常用关联字段作为分布键,例如账号、客户号,这个可以提高关联条件的命中率,减少关联时数据重分布 对于1亿条记录以下的表不分区(对于小系统,该阀值适当调低) 索引使用: • 以数据批处理为主要功能的系统一般不需建索引 • 以并发查询为主要功能,特别OLTP查询(根据KEY,Attribute等作为筛选条件)的系统按照常用字段建索引。 • 建索引的方法:对于区别度高的字段,如账号、手机号码等使用B-Tree索引,对于区别度低的字段(<10000),采用 Bitmap索引; • 表关联时0 码力 | 41 页 | 1.42 MB | 1 年前3 Pivotal Greenplum 最佳实践分享节点一般配置4~8个Instance,初始化完成后很 难修改,需要提前规划; • 每个Instance都是一套独立的进程,当客户端 发起一个请求时,每个Instance都将FORK子进 程并行工作; • 对于并发请求高、面向于复杂的灵活查询的系 统,建议每个Segment配置4个或以下Instance, 这样来保证每个Instance所需资源,保证系统 系统运行稳定性,例如,减少OOM发生的概率; • 对于以批处理、串行工作为主的系统,可以配 对于少数频繁查询的宽表,例如交易表、帐户表、客户表等采用列存储,其它表采用行存储 数据压缩: • 在金融业,行压缩的数据压缩比在1:6左右,一般采用zlib5级压缩 • 数据压缩对于高并发查询分析系统可以大幅降低IO消耗,提升并行处理、混合负载的性能 分布键使用: • 尽量采用一个常用关联字段作为分布键,例如账号、客户号,这个可以提高关联条件的命中率,减少关联时数据重分布 对于1亿条记录以下的表不分区(对于小系统,该阀值适当调低) 索引使用: • 以数据批处理为主要功能的系统一般不需建索引 • 以并发查询为主要功能,特别OLTP查询(根据KEY,Attribute等作为筛选条件)的系统按照常用字段建索引。 • 建索引的方法:对于区别度高的字段,如账号、手机号码等使用B-Tree索引,对于区别度低的字段(<10000),采用 Bitmap索引; • 表关联时0 码力 | 41 页 | 1.42 MB | 1 年前3
 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum............................................................................................. 10 并发控制优化 .............................................................................................. m 6 及未来发布的 Greenplum 7 丰富的 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 欧拉开源操作系统是一款面向数字基础设施的操作系统,支持服务器、云计算、边缘计算、嵌入式等应用场景,支持多 样性计算,致力于提供安全、稳定、易用的操作系统。 15%-17%,值得一提的是此论文主要由中国研发团队完成,也说明了中国研发团队实力处于世界一流水平。在论文 中 Greenplum 团队提出一种全新的全局死锁检测器来减少独占锁的使用,减少独占锁的使用可以极大的提高数据库 在高并发状态下的性能,这项技术已经在 Greenplum6 实现。 在 Greenplum6 和即将发布的 Greenplum 7, 带来了多项产品改进和新增功能,这些功能提升了性能,增加了系统可0 码力 | 17 页 | 2.04 MB | 1 年前3 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum............................................................................................. 10 并发控制优化 .............................................................................................. m 6 及未来发布的 Greenplum 7 丰富的 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 欧拉开源操作系统是一款面向数字基础设施的操作系统,支持服务器、云计算、边缘计算、嵌入式等应用场景,支持多 样性计算,致力于提供安全、稳定、易用的操作系统。 15%-17%,值得一提的是此论文主要由中国研发团队完成,也说明了中国研发团队实力处于世界一流水平。在论文 中 Greenplum 团队提出一种全新的全局死锁检测器来减少独占锁的使用,减少独占锁的使用可以极大的提高数据库 在高并发状态下的性能,这项技术已经在 Greenplum6 实现。 在 Greenplum6 和即将发布的 Greenplum 7, 带来了多项产品改进和新增功能,这些功能提升了性能,增加了系统可0 码力 | 17 页 | 2.04 MB | 1 年前3
 并行不悖- OLAP 在互联网公司的实践与思考Ø实时,在线系统,客户使用 Ø事务小,频率高,并发高 • 过去的数据 —— OLAP Ø非实时(T+1,或小时级),离线系统,分析决策 Ø事务大,频率相对小,并发低 • 未来的数据 —— 趋势分析 Ø非实时,离线+在线流系统,趋势分析 Ø算法分析,持续计算 5 数据仓库体系架构 OLAP场景举例 • 业务相关场景 Ø用户状态 (注册数,活跃数,并发量,峰值) Ø金币状态 Ø道具/物品状态 所有都用小写字母加下划线的方式 Ø 按照命名规则,做到见名知义 37 Greenplum开发规范 Greenplum使用规范 • 平时使用规范 Ø避免高频率的insert、update操作 Ø避免频繁执行高内存消耗的会话 Ø避免出现死锁 Ø可以在适当的时候执行 vaccum 操作 Ø避免直接在Greenplum执行消耗session会话的操作 Ø尽量不创建索引 • 上线与调度规范 Ø上线的程序,必须要经过测试,才可以生产使用 通过dbsync程序,实现数据传输和加载优化 Ø 对于Greenplum上的架构和设计不断优化 Ø 继续建设多样化的postgresql数据集市,满足不同需求 • 优化现有业务的调度实现 Ø 时间周期的考量 Ø 并发与功能实现的权衡 Ø 增强任务可控性和可度量性 • 支持符合条件的新业务 Ø 抽象业务模型,整合使用分类 Ø 简化上线模型,优化上线方式 40 Greenplum扩展规划 新业务上线流程0 码力 | 43 页 | 9.66 MB | 1 年前3 并行不悖- OLAP 在互联网公司的实践与思考Ø实时,在线系统,客户使用 Ø事务小,频率高,并发高 • 过去的数据 —— OLAP Ø非实时(T+1,或小时级),离线系统,分析决策 Ø事务大,频率相对小,并发低 • 未来的数据 —— 趋势分析 Ø非实时,离线+在线流系统,趋势分析 Ø算法分析,持续计算 5 数据仓库体系架构 OLAP场景举例 • 业务相关场景 Ø用户状态 (注册数,活跃数,并发量,峰值) Ø金币状态 Ø道具/物品状态 所有都用小写字母加下划线的方式 Ø 按照命名规则,做到见名知义 37 Greenplum开发规范 Greenplum使用规范 • 平时使用规范 Ø避免高频率的insert、update操作 Ø避免频繁执行高内存消耗的会话 Ø避免出现死锁 Ø可以在适当的时候执行 vaccum 操作 Ø避免直接在Greenplum执行消耗session会话的操作 Ø尽量不创建索引 • 上线与调度规范 Ø上线的程序,必须要经过测试,才可以生产使用 通过dbsync程序,实现数据传输和加载优化 Ø 对于Greenplum上的架构和设计不断优化 Ø 继续建设多样化的postgresql数据集市,满足不同需求 • 优化现有业务的调度实现 Ø 时间周期的考量 Ø 并发与功能实现的权衡 Ø 增强任务可控性和可度量性 • 支持符合条件的新业务 Ø 抽象业务模型,整合使用分类 Ø 简化上线模型,优化上线方式 40 Greenplum扩展规划 新业务上线流程0 码力 | 43 页 | 9.66 MB | 1 年前3
 Pivotal Greenplum 5: 新一代数据平台有云和私有云)中,也适用不同的本地配置。其大规模并行处理 (MPP) SQL 的设计核心是一个称为 GPORCA 的新一代查 询优化器。GPORCA 专为满足在多结构数据环境中进行高级分析的需求而设计,能够处理多种并发混合工作负载的复杂查 询。与旧式 MPP 数据库中常用的传统 RDBMS 查询优化器相比,GPORCA 大幅度地提高了查询性能。 Pivotal Greenplum 5:新一代数据平台 作为重要的新版本,Pivotal GPORCA 能够针对分析数据仓库中常见的一些复杂情况生成更高效的代码,因而非常实用。过去,系统默认使用传统查询 优化器,但自 Greenplum 5 起,GPORCA 将成为默认查询优化器。它能够通过并发的混合工作负载处理多种复杂查询, 并可提高查询性能。2 这样一来,大型团队就可以利用高级分析和多元化工作负载并行处理多个分析用例,针对大型数据卷实现较高的分析查询 性能。GPORCA 的强大之处在于 管数量不多)尚且无法通过 GPORCA 实现性能提升。随着 GPORCA 的功能逐渐增多,传统查询优化器能够在性能上胜出 的情况将变得极为罕见。4 Greenplum资源组和Workload Manager 管理并发性能和用户资源分配是 Greenplum 的主要功能之一。这一版本不仅增强了 Workload Manager 的功能,还引入了 一种管理数据库查询的新方法——资源组,可让数据库管理员更好地控制用户活动,尤其是在0 码力 | 9 页 | 690.33 KB | 1 年前3 Pivotal Greenplum 5: 新一代数据平台有云和私有云)中,也适用不同的本地配置。其大规模并行处理 (MPP) SQL 的设计核心是一个称为 GPORCA 的新一代查 询优化器。GPORCA 专为满足在多结构数据环境中进行高级分析的需求而设计,能够处理多种并发混合工作负载的复杂查 询。与旧式 MPP 数据库中常用的传统 RDBMS 查询优化器相比,GPORCA 大幅度地提高了查询性能。 Pivotal Greenplum 5:新一代数据平台 作为重要的新版本,Pivotal GPORCA 能够针对分析数据仓库中常见的一些复杂情况生成更高效的代码,因而非常实用。过去,系统默认使用传统查询 优化器,但自 Greenplum 5 起,GPORCA 将成为默认查询优化器。它能够通过并发的混合工作负载处理多种复杂查询, 并可提高查询性能。2 这样一来,大型团队就可以利用高级分析和多元化工作负载并行处理多个分析用例,针对大型数据卷实现较高的分析查询 性能。GPORCA 的强大之处在于 管数量不多)尚且无法通过 GPORCA 实现性能提升。随着 GPORCA 的功能逐渐增多,传统查询优化器能够在性能上胜出 的情况将变得极为罕见。4 Greenplum资源组和Workload Manager 管理并发性能和用户资源分配是 Greenplum 的主要功能之一。这一版本不仅增强了 Workload Manager 的功能,还引入了 一种管理数据库查询的新方法——资源组,可让数据库管理员更好地控制用户活动,尤其是在0 码力 | 9 页 | 690.33 KB | 1 年前3
 Greenplum机器学习⼯具集和案例AS ID) foo DISTRIBUTED BY (id); 2017.thegiac.com 2017.thegiac.com • 适合模型应用于数据子集的场景,并行执行效率非常高 • 如果节点间数据通讯,使用 适⽤用场景 2017.thegiac.com MADlib 2017.thegiac.com 强⼤大的分析能⼒力力 ● 机器器学习 MADlib Spark 算法库 易用性 需要编程 查询优化 成熟度稍差 内存和流处理 通过 Gemfire SQL 语法支持 需要提升 磁盘数据 不是核心焦点 并发性能 不是核心焦点 大数据关联 不是核心焦点 2017.thegiac.com ⽤用户案例例 1 Greenplum + MADlib 助⼒力力邮件营销 20170 码力 | 58 页 | 1.97 MB | 1 年前3 Greenplum机器学习⼯具集和案例AS ID) foo DISTRIBUTED BY (id); 2017.thegiac.com 2017.thegiac.com • 适合模型应用于数据子集的场景,并行执行效率非常高 • 如果节点间数据通讯,使用 适⽤用场景 2017.thegiac.com MADlib 2017.thegiac.com 强⼤大的分析能⼒力力 ● 机器器学习 MADlib Spark 算法库 易用性 需要编程 查询优化 成熟度稍差 内存和流处理 通过 Gemfire SQL 语法支持 需要提升 磁盘数据 不是核心焦点 并发性能 不是核心焦点 大数据关联 不是核心焦点 2017.thegiac.com ⽤用户案例例 1 Greenplum + MADlib 助⼒力力邮件营销 20170 码力 | 58 页 | 1.97 MB | 1 年前3
 Greenplum 新一代数据管理和数据分析解决方案每台机器配置6个千兆网口 • Raid10 • Solaris 10 网站日志 交易数据 详细数据 Greenplum •海量基础数据 •大数据量查询 Oracle 加工数据 •门户网站 •高并发查询 。。。。。。 用户信息 Hardware Architecture 案例分享:上海航空 结算 系统 源系统 Oracle GreenPlum 结算 ETL Staging ETL0 码力 | 45 页 | 2.07 MB | 1 年前3 Greenplum 新一代数据管理和数据分析解决方案每台机器配置6个千兆网口 • Raid10 • Solaris 10 网站日志 交易数据 详细数据 Greenplum •海量基础数据 •大数据量查询 Oracle 加工数据 •门户网站 •高并发查询 。。。。。。 用户信息 Hardware Architecture 案例分享:上海航空 结算 系统 源系统 Oracle GreenPlum 结算 ETL Staging ETL0 码力 | 45 页 | 2.07 MB | 1 年前3
 Greenplum资源管理器Processing) 2017 年象行中国(杭州 站)第一期 Greenplum数据库 2017 年象行中国(杭州 站)第一期 Resource Queue • SQL语句并发控制 • 基于cost的并发控制 • 基于priority的CPU控制 • 内存控制 2017 年象行中国(杭州 站)第一期 Running Example • CREATE RESOURCE QUEUE rq Runaway Detector 2017 年象行中国(杭州 站)第一期 Resource Queue • Deadlock – active_statements => ‘等待’ – SQL级并发控制 => 可能持有锁 – 拿着锁等待 => 环状等待 – Tx1: LOCK tbl; -- AccessExclusiveLock Tx2: INSERT INTO tbl; -- RowExclusiveLock 2017 年象行中国(杭州 站)第一期 Resource Queue • System PANIC – 需要睡眠/唤醒机制 – Count + LWLock + Lock • Count:记录并发数 • LWLock:保护count • Lock:睡眠/唤醒,死锁检测,状态报告 – 维护Lock在共享内存的状态 – bug => lock table corruption => PANIC0 码力 | 21 页 | 756.29 KB | 1 年前3 Greenplum资源管理器Processing) 2017 年象行中国(杭州 站)第一期 Greenplum数据库 2017 年象行中国(杭州 站)第一期 Resource Queue • SQL语句并发控制 • 基于cost的并发控制 • 基于priority的CPU控制 • 内存控制 2017 年象行中国(杭州 站)第一期 Running Example • CREATE RESOURCE QUEUE rq Runaway Detector 2017 年象行中国(杭州 站)第一期 Resource Queue • Deadlock – active_statements => ‘等待’ – SQL级并发控制 => 可能持有锁 – 拿着锁等待 => 环状等待 – Tx1: LOCK tbl; -- AccessExclusiveLock Tx2: INSERT INTO tbl; -- RowExclusiveLock 2017 年象行中国(杭州 站)第一期 Resource Queue • System PANIC – 需要睡眠/唤醒机制 – Count + LWLock + Lock • Count:记录并发数 • LWLock:保护count • Lock:睡眠/唤醒,死锁检测,状态报告 – 维护Lock在共享内存的状态 – bug => lock table corruption => PANIC0 码力 | 21 页 | 756.29 KB | 1 年前3
 Greenplum 6: 混合负载的理想数据平台transaction processing - 联机事务处理 出色的OLTP特性 天生的优势 ● 行式存储 ● 索引 ● 直接分发 ● 完整的增删改 Greenplum 6 增强 ● 并发修改、删除 ● 系统性的优化事务和锁 26 Pivotal Confidential–Internal Use Only 行式存储 表‘SALES’ 表‘SALES’ ■ 更适合OLTP负载 ■ 支持更改删除、删除 ■ 支持更改分布键、主键(将数据从一个节点移到另一个节点) 30 Pivotal Confidential–Internal Use Only Greenplum 6:并发改删和分布式死锁检测 全局死 锁检测 gpconfig -c ‘gp_enable_global_deadlock_detector’ -v on 31 Pivotal Confidential–Internal TPS (192核单机部署 ,master+18 segments) 34 Pivotal Confidential–Internal Use Only TPC-B基准测试:UPDATE ■ 得益于并发更改特性 ■ 70倍的TPS提升 35 Pivotal Confidential–Internal Use Only TPC-B基准测试:INSERT ■ 峰值TPS提升3.6倍 36 Pivotal0 码力 | 52 页 | 4.48 MB | 1 年前3 Greenplum 6: 混合负载的理想数据平台transaction processing - 联机事务处理 出色的OLTP特性 天生的优势 ● 行式存储 ● 索引 ● 直接分发 ● 完整的增删改 Greenplum 6 增强 ● 并发修改、删除 ● 系统性的优化事务和锁 26 Pivotal Confidential–Internal Use Only 行式存储 表‘SALES’ 表‘SALES’ ■ 更适合OLTP负载 ■ 支持更改删除、删除 ■ 支持更改分布键、主键(将数据从一个节点移到另一个节点) 30 Pivotal Confidential–Internal Use Only Greenplum 6:并发改删和分布式死锁检测 全局死 锁检测 gpconfig -c ‘gp_enable_global_deadlock_detector’ -v on 31 Pivotal Confidential–Internal TPS (192核单机部署 ,master+18 segments) 34 Pivotal Confidential–Internal Use Only TPC-B基准测试:UPDATE ■ 得益于并发更改特性 ■ 70倍的TPS提升 35 Pivotal Confidential–Internal Use Only TPC-B基准测试:INSERT ■ 峰值TPS提升3.6倍 36 Pivotal0 码力 | 52 页 | 4.48 MB | 1 年前3
共 22 条
- 1
- 2
- 3













