 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum白皮书 开源 Greenplum 新篇章: 兼容欧拉开源操作系统的数据平台 支持国产生态的高级分析数据平台 作者:Greenplum 中文社区、 欧拉开源社区 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum 白皮书 ........................................................................................ 4 欧拉开源操作系统 .................................................................................................. ........................................................................................ 6 欧拉开源操作系统平台架构 ..............................................................................................0 码力 | 17 页 | 2.04 MB | 1 年前3 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum白皮书 开源 Greenplum 新篇章: 兼容欧拉开源操作系统的数据平台 支持国产生态的高级分析数据平台 作者:Greenplum 中文社区、 欧拉开源社区 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum 白皮书 ........................................................................................ 4 欧拉开源操作系统 .................................................................................................. ........................................................................................ 6 欧拉开源操作系统平台架构 ..............................................................................................0 码力 | 17 页 | 2.04 MB | 1 年前3
 Greenplum Database 管理员指南 6.2.1................................................................................... - 29 - 基于时间的登录认证 .................................................................................................. ................................................................................. - 31 - 第四章:配置客户端认证 .................................................................................................. .......................................................................................... - 95 - 系统模式 ................................................................................................0 码力 | 416 页 | 6.08 MB | 1 年前3 Greenplum Database 管理员指南 6.2.1................................................................................... - 29 - 基于时间的登录认证 .................................................................................................. ................................................................................. - 31 - 第四章:配置客户端认证 .................................................................................................. .......................................................................................... - 95 - 系统模式 ................................................................................................0 码力 | 416 页 | 6.08 MB | 1 年前3
 PostgreSQL和Greenplum 数据库故障排查# %r = remote host and port 2018年PostgreSQL中国技术大会 微信号:laohouzi999 4)认证方式pg_hba.conf vi $PGDATA/pg_hba.conf # TYPE DATABASE USER ADDRESS METHOD 采用local连接方式不必填写,该项可以是IPv4地址或IPv6地址,可以定义某 台主机或某个网段。 认证方法(METHOD) METHOD指定如何处理客户端的认证。常用的有ident,md5,password, trust,reject。 ident ident是Linux下PostgreSQL默认的local认证方式,凡是能正确登录服务器的 OS用户(注:不是数据库用户)就能使用本用户映射的数据库用户不需密码 很多初学者都会遇到psql -U username登录数据库却出现“username ident 认证失败”的错误,明明数据库用户已经createuser。 原因就在于此,使用了ident认证方式,却没有同名的操作系统用户或没 有相应的映射用户。 md5 密码是以md5形式传送给数据库,较安全,且不需建立同名的操作系统用 户。 password password是以明文0 码力 | 84 页 | 12.61 MB | 1 年前3 PostgreSQL和Greenplum 数据库故障排查# %r = remote host and port 2018年PostgreSQL中国技术大会 微信号:laohouzi999 4)认证方式pg_hba.conf vi $PGDATA/pg_hba.conf # TYPE DATABASE USER ADDRESS METHOD 采用local连接方式不必填写,该项可以是IPv4地址或IPv6地址,可以定义某 台主机或某个网段。 认证方法(METHOD) METHOD指定如何处理客户端的认证。常用的有ident,md5,password, trust,reject。 ident ident是Linux下PostgreSQL默认的local认证方式,凡是能正确登录服务器的 OS用户(注:不是数据库用户)就能使用本用户映射的数据库用户不需密码 很多初学者都会遇到psql -U username登录数据库却出现“username ident 认证失败”的错误,明明数据库用户已经createuser。 原因就在于此,使用了ident认证方式,却没有同名的操作系统用户或没 有相应的映射用户。 md5 密码是以md5形式传送给数据库,较安全,且不需建立同名的操作系统用 户。 password password是以明文0 码力 | 84 页 | 12.61 MB | 1 年前3
 深度揭秘Greenplum开源数据库透明加密GPDB的数据安全 System Admin • 管理集群 • 数据备份恢复 GPDB为单独数据库软件 • 非一体机 • 缺少对硬件和系统的控制 潜在风险(一) GPDB的数据安全 System Admin • 管理集群 • 数据备份恢复 需要登录到系统进行运维 • 可以访问数据库二进制文件 • 可以访问数据库数据文件 • 可以访问预写日志文件 潜在风险(二) GPDB的数据安全 • 审计要求 用户数据存在直接暴露的风险 • 非部门员工运维(原厂,主机厂或者合作伙伴) • 事后审计难度很大 • 服务器数据被盗(托管或云部署) 用户的问题 现有解决方案 基于操作的系统的硬盘加密 • 只能防范服务器硬盘被盗 • 对运维安全无能为力 基于pgcypto的加密 • 可以满足数据安全要求 • 非原生方案 • 问题很多 基于pgcypto的数据加密方案 pgcypto (Encrypted) Major key (Decrypted) Cached Data (Encrypted) Object key (Encrypted) Data (Encrypted) 系统域认证+二进制文件证书认证 工作流程 GPDB透明加密解析 KMS Master key Disk Memory Major key (Encrypted) Disk Memory/Client0 码力 | 48 页 | 10.19 MB | 1 年前3 深度揭秘Greenplum开源数据库透明加密GPDB的数据安全 System Admin • 管理集群 • 数据备份恢复 GPDB为单独数据库软件 • 非一体机 • 缺少对硬件和系统的控制 潜在风险(一) GPDB的数据安全 System Admin • 管理集群 • 数据备份恢复 需要登录到系统进行运维 • 可以访问数据库二进制文件 • 可以访问数据库数据文件 • 可以访问预写日志文件 潜在风险(二) GPDB的数据安全 • 审计要求 用户数据存在直接暴露的风险 • 非部门员工运维(原厂,主机厂或者合作伙伴) • 事后审计难度很大 • 服务器数据被盗(托管或云部署) 用户的问题 现有解决方案 基于操作的系统的硬盘加密 • 只能防范服务器硬盘被盗 • 对运维安全无能为力 基于pgcypto的加密 • 可以满足数据安全要求 • 非原生方案 • 问题很多 基于pgcypto的数据加密方案 pgcypto (Encrypted) Major key (Decrypted) Cached Data (Encrypted) Object key (Encrypted) Data (Encrypted) 系统域认证+二进制文件证书认证 工作流程 GPDB透明加密解析 KMS Master key Disk Memory Major key (Encrypted) Disk Memory/Client0 码力 | 48 页 | 10.19 MB | 1 年前3
 Greenplum数据库架构分析及5.x新功能分享分布式数据库:线性扩展,支持上百物理节点  企业级数据库:全球大客户超过 1000+ 安装集群  百万行源代码,超过10年的全球研发投入  开源数据库(greenplum.org),良性生态系统 5 Pivotal Confidential–Inter nal Use Only 5 © Copyright 2013 Pivotal. All rights reserved. Greenplum 多级容错机制 无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存)  支持高效更新和删除  AO 主要为插入而优化 表‘SALES’ 11月 列存储 行存储 7月 一年前 二年前 外部表  历史数据和不常访问的数 据存储在 HDFS 或者其他 外部系统中  无缝查询所有数据  Text, CSV, Binary, Avro, Parquet 格式 6月 5月 10月 9月 8月 用户自定义数据存储格式 14 Pivotal Confidential–Inter0 码力 | 44 页 | 8.35 MB | 1 年前3 Greenplum数据库架构分析及5.x新功能分享分布式数据库:线性扩展,支持上百物理节点  企业级数据库:全球大客户超过 1000+ 安装集群  百万行源代码,超过10年的全球研发投入  开源数据库(greenplum.org),良性生态系统 5 Pivotal Confidential–Inter nal Use Only 5 © Copyright 2013 Pivotal. All rights reserved. Greenplum 多级容错机制 无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存)  支持高效更新和删除  AO 主要为插入而优化 表‘SALES’ 11月 列存储 行存储 7月 一年前 二年前 外部表  历史数据和不常访问的数 据存储在 HDFS 或者其他 外部系统中  无缝查询所有数据  Text, CSV, Binary, Avro, Parquet 格式 6月 5月 10月 9月 8月 用户自定义数据存储格式 14 Pivotal Confidential–Inter0 码力 | 44 页 | 8.35 MB | 1 年前3
 并行不悖- OLAP 在互联网公司的实践与思考数据仓库体系架构 业务数据与数据特点 • 现在的数据 —— OLTP Ø实时,在线系统,客户使用 Ø事务小,频率高,并发高 • 过去的数据 —— OLAP Ø非实时(T+1,或小时级),离线系统,分析决策 Ø事务大,频率相对小,并发低 • 未来的数据 —— 趋势分析 Ø非实时,离线+在线流系统,趋势分析 Ø算法分析,持续计算 5 数据仓库体系架构 OLAP场景举例 • 业务相关场景 10 greenplum体系架构 postgresql体系结构 11 greenplum体系架构 postgresql体系结构 • pg结构组成 Ø 连接关系系统 Ø 编译执行系统 Ø 存储执行系统 Ø 事务系统 Ø 系统表 • pg逻辑和物理结构 Ø instance实例 - user - tablesapce Ø database - schema - table,view,function Greenplum开发规范 五 Greenplum运维体系 四 Greenplum扩展规划 六 22 Greenplum运维体系 环境创建与部署 • 部署流程 Ø 规划部署方案 Ø 准备硬件资源 Ø 修改系统参数 Ø 安装 Greenplum 软件 / postgresql软件 Ø 初始化实例 Ø 修改实例参数文件 Ø 初始化业务所需库表环境、用户环境 Ø 加载数据 Ø 业务程序访问 23 Greenplum运维体系0 码力 | 43 页 | 9.66 MB | 1 年前3 并行不悖- OLAP 在互联网公司的实践与思考数据仓库体系架构 业务数据与数据特点 • 现在的数据 —— OLTP Ø实时,在线系统,客户使用 Ø事务小,频率高,并发高 • 过去的数据 —— OLAP Ø非实时(T+1,或小时级),离线系统,分析决策 Ø事务大,频率相对小,并发低 • 未来的数据 —— 趋势分析 Ø非实时,离线+在线流系统,趋势分析 Ø算法分析,持续计算 5 数据仓库体系架构 OLAP场景举例 • 业务相关场景 10 greenplum体系架构 postgresql体系结构 11 greenplum体系架构 postgresql体系结构 • pg结构组成 Ø 连接关系系统 Ø 编译执行系统 Ø 存储执行系统 Ø 事务系统 Ø 系统表 • pg逻辑和物理结构 Ø instance实例 - user - tablesapce Ø database - schema - table,view,function Greenplum开发规范 五 Greenplum运维体系 四 Greenplum扩展规划 六 22 Greenplum运维体系 环境创建与部署 • 部署流程 Ø 规划部署方案 Ø 准备硬件资源 Ø 修改系统参数 Ø 安装 Greenplum 软件 / postgresql软件 Ø 初始化实例 Ø 修改实例参数文件 Ø 初始化业务所需库表环境、用户环境 Ø 加载数据 Ø 业务程序访问 23 Greenplum运维体系0 码力 | 43 页 | 9.66 MB | 1 年前3
 Pivotal Greenplum 5: 新一代数据平台Pivotal 最近推出全球第一个开源、支持多云的高级分析数据平台——Pivotal Greenplum 5。本白皮书着眼介绍 Greenplum 5 的核心特征,及多年来围绕该平台发展出的生态系统。 摘要 Pivotal Greenplum 不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在多云环境(公 有云和私有云)中,也适用不同的本地配置。其大规模并行处理 Pivotal Network 分发的打包版本将具有相同的内核(只有个别微小差 别)。这是两年来致力于与 PostgreSQL 8.3.23 集成的成果,目的在于扩展和融入以 Greenplum 为中心的生态系统和社 区。为了更好地贴合 PostgreSQL 社区的模式,他们对代码库进行了重构,这样一来,便可以更轻松地从最新版本(未来 的 PostgreSQL 9.X 和 10)中纳入 PostgreSQL Pivotal Greenplum 或是开源的 Greenplum Database 中,这种不受限于基础架构的方法的大部分优势都 具有同样强大的作用。在 Greenplum Database 上部署分析系统时,用户还可获得一些额外的优势: • Greenplum Database 可消除平台 / 供应商制约。用户可通过不同供应商获得针对 Greenplum 的服务和支持。 • Greenplum0 码力 | 9 页 | 690.33 KB | 1 年前3 Pivotal Greenplum 5: 新一代数据平台Pivotal 最近推出全球第一个开源、支持多云的高级分析数据平台——Pivotal Greenplum 5。本白皮书着眼介绍 Greenplum 5 的核心特征,及多年来围绕该平台发展出的生态系统。 摘要 Pivotal Greenplum 不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在多云环境(公 有云和私有云)中,也适用不同的本地配置。其大规模并行处理 Pivotal Network 分发的打包版本将具有相同的内核(只有个别微小差 别)。这是两年来致力于与 PostgreSQL 8.3.23 集成的成果,目的在于扩展和融入以 Greenplum 为中心的生态系统和社 区。为了更好地贴合 PostgreSQL 社区的模式,他们对代码库进行了重构,这样一来,便可以更轻松地从最新版本(未来 的 PostgreSQL 9.X 和 10)中纳入 PostgreSQL Pivotal Greenplum 或是开源的 Greenplum Database 中,这种不受限于基础架构的方法的大部分优势都 具有同样强大的作用。在 Greenplum Database 上部署分析系统时,用户还可获得一些额外的优势: • Greenplum Database 可消除平台 / 供应商制约。用户可通过不同供应商获得针对 Greenplum 的服务和支持。 • Greenplum0 码力 | 9 页 | 690.33 KB | 1 年前3
 Greenplum数据仓库UDW - UCloud中立云计算服务商UDW 的客⼾端 ⽀持通过 JDBC、ODBC、PHP、Python、命令⾏ Sql 等⽅式访问 UDW 2. Master Node:访问 UDW 数据仓库的⼊⼝ 接收客⼾端的连接请求 负责权限认证 处理 SQL 命令 调度分发执⾏计划 汇总 Segment 的执⾏结果并将结果返回给客⼾端 3. Compute Node: Compute Node 管理节点的计算和存储资源 每个 Compute UDW Copyright © 2012-2021 UCloud 优刻得 16/206 如上图所⽰客⼾端访问管理,提供了客⼾端下载和数据加载⼯具和⽂档的下载。 JDBC连接 连接 Linux操作系统 快速上⼿ Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 17/206 yum install postgresql-jdbc.noarch exit(0); } } } 快速上⼿ Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 20/206 ODBC⽅式连接 ⽅式连接 Linux操作系统:CentOS 6.5 64位 1. 安装 postgresql odbc驱动 # yum install postgresql-odbc.x86_64 -y 2. 编辑/etc/odbcinst0 码力 | 206 页 | 5.35 MB | 1 年前3 Greenplum数据仓库UDW - UCloud中立云计算服务商UDW 的客⼾端 ⽀持通过 JDBC、ODBC、PHP、Python、命令⾏ Sql 等⽅式访问 UDW 2. Master Node:访问 UDW 数据仓库的⼊⼝ 接收客⼾端的连接请求 负责权限认证 处理 SQL 命令 调度分发执⾏计划 汇总 Segment 的执⾏结果并将结果返回给客⼾端 3. Compute Node: Compute Node 管理节点的计算和存储资源 每个 Compute UDW Copyright © 2012-2021 UCloud 优刻得 16/206 如上图所⽰客⼾端访问管理,提供了客⼾端下载和数据加载⼯具和⽂档的下载。 JDBC连接 连接 Linux操作系统 快速上⼿ Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 17/206 yum install postgresql-jdbc.noarch exit(0); } } } 快速上⼿ Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 20/206 ODBC⽅式连接 ⽅式连接 Linux操作系统:CentOS 6.5 64位 1. 安装 postgresql odbc驱动 # yum install postgresql-odbc.x86_64 -y 2. 编辑/etc/odbcinst0 码力 | 206 页 | 5.35 MB | 1 年前3
 Greenplum 精粹文集SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big Date2.indd 1 16-11-22 下午3:38 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 时是千兆以太网)组建的 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce 计算框架还是 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum google、yahoo、ibm 和 TD),说干就干,花了一年多的时间 完成最初的版本设计和开发,用软件实现了在开放 X86 平台上的分布 式并行计算,不依赖于任何专有硬件,达到的性能却远远超过传统高 昂的专有系统。 Big Date2.indd 2 16-11-22 下午3:38 Greenplum 精粹文集 3 大家都知道 Greenplum 的数据库引擎层是基于著名的开源数据库 Post0 码力 | 64 页 | 2.73 MB | 1 年前3 Greenplum 精粹文集SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big Date2.indd 1 16-11-22 下午3:38 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 时是千兆以太网)组建的 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce 计算框架还是 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum google、yahoo、ibm 和 TD),说干就干,花了一年多的时间 完成最初的版本设计和开发,用软件实现了在开放 X86 平台上的分布 式并行计算,不依赖于任何专有硬件,达到的性能却远远超过传统高 昂的专有系统。 Big Date2.indd 2 16-11-22 下午3:38 Greenplum 精粹文集 3 大家都知道 Greenplum 的数据库引擎层是基于著名的开源数据库 Post0 码力 | 64 页 | 2.73 MB | 1 年前3
 Pivotal Greenplum 最佳实践分享• 对于并发请求高、面向于复杂的灵活查询的系 统,建议每个Segment配置4个或以下Instance, 这样来保证每个Instance所需资源,保证系统 系统运行稳定性,例如,减少OOM发生的概率; • 对于以批处理、串行工作为主的系统,可以配 置到8个Instance,这样可以尽可能的发挥每个 CPU的处理性能。 Master query plan Client Segments M22 统计信息收集  对于系统表和用户表需要收集统计信息,GPDB的查询计划是cost base的,统计信息的准确性对查询 计划的优劣有很大影响;  对于字段数较多的表,可关闭gp_autostate_mode (on_no_stats=>none),仅对必要列执行Analyze, 只在结果中返回的列无需收集统计信息;  对于频繁创建表删表的系统,可关闭gp_autostate_mode(on_no_stats=> on_change – gp_autostats_on_change_threshold = 5000000(资料依据项目而定)  Truncate操作不会丢失字段级统计信息,在适当条件下可仅针对系统字段执行Analyze 垃圾空间回收 • GPDB采用MVCC机制,UPDATE 或 DELETE并非物理删除,而只是对无效记 录做标记; • Update/delete操作后,数0 码力 | 41 页 | 1.42 MB | 1 年前3 Pivotal Greenplum 最佳实践分享• 对于并发请求高、面向于复杂的灵活查询的系 统,建议每个Segment配置4个或以下Instance, 这样来保证每个Instance所需资源,保证系统 系统运行稳定性,例如,减少OOM发生的概率; • 对于以批处理、串行工作为主的系统,可以配 置到8个Instance,这样可以尽可能的发挥每个 CPU的处理性能。 Master query plan Client Segments M22 统计信息收集  对于系统表和用户表需要收集统计信息,GPDB的查询计划是cost base的,统计信息的准确性对查询 计划的优劣有很大影响;  对于字段数较多的表,可关闭gp_autostate_mode (on_no_stats=>none),仅对必要列执行Analyze, 只在结果中返回的列无需收集统计信息;  对于频繁创建表删表的系统,可关闭gp_autostate_mode(on_no_stats=> on_change – gp_autostats_on_change_threshold = 5000000(资料依据项目而定)  Truncate操作不会丢失字段级统计信息,在适当条件下可仅针对系统字段执行Analyze 垃圾空间回收 • GPDB采用MVCC机制,UPDATE 或 DELETE并非物理删除,而只是对无效记 录做标记; • Update/delete操作后,数0 码力 | 41 页 | 1.42 MB | 1 年前3
共 22 条
- 1
- 2
- 3













