完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum了欧拉开源操作系 统平台架构、创新性及核心特点, 同时介绍了 Greenplum 作为一款深受技术爱好者喜爱的、中立的纯开源软件,践行 “Run Everywhere”原则,用全新的HTAP核心设计满足实时处理业务需求。在此也为所有为Greenplum on openEuler 成功测试运行所做努力贡献的人员表示感谢! 摘要 Greenplum 不受限于基础架构,这意味着它是一 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 欧拉开源操作系统是一款面向数字基础设施的操作系统,支持服务器、云计算、边缘计算、嵌入式等应用场景,支持多 样性计算,致力于提供安全、稳定、易用的操作系统。 Greenplum Edge、面向嵌入式的版本 openEuler 21.09 Embedded。 openEuler 希望与广大生态伙伴、用户、开发者一起,通过联合创新、社区共建,不断增强场景化能力,最终实现统一 操作系统支持多设备,应用一次开发覆盖全场景。 openEuler 平台架构 openEuler 是覆盖全场景的创新平台,在引领内核创新,夯实云化基座的基础上,面向计算架构互联总线、存储介质0 码力 | 17 页 | 2.04 MB | 1 年前3
Greenplum 新一代数据管理和数据分析解决方案www.greenplum.com www.greenplum-china.com Greenplum:简介 Greenplum数据引擎软件为新一代数 据仓库所需的大规模数据和复杂查询功 能所设计 3 推动数据依赖型企业的发展 全球各地的一些Greenplum客户 4 亚太地区 欧洲、中东、非洲 北美 中国的客户 5 金融 交通 互联网 其它 Teradata Netezza • 大磁盘 过去Google™ 曾经用来实现信息搜索功能的技术, 现在被Greenplum用于数据仓库 现在的解决方案 12 Greenplum愿景:企业数据集合 13 • 在企业内创建统一的数据运算平台 • 企业所有者可以直接控制其数据实例 • 通过实体整合提供企业级数据访问功能 • 灵活的扩展和配置降低了投资的平均风险 源文件 源数据 源数据 源文件 数据仓库和分析应 用程序 Greenplum数据引擎 全球最强大的分析数据仓库 海量并行查询 • 可以比以往更快地获取 查询结果 • 在数据增长的同时确保 高性能分析 统一的分析处理功能 • 为数据仓库、市场、 ELT、文本挖掘、统计 运算提供统一的平台 • 可以使用SQL、 MapReduce、R等在 所有层次上对任何数 据进行并行分析 19 通过经济的方案扩展 到千万亿字节规模 • 不用担心数据增长或0 码力 | 45 页 | 2.07 MB | 1 年前3
Greenplum Database 管理员指南 6.2.1..................................................................................... - 127 - 查看分区设计 .................................................................................................. ....................................................................................... - 391 - 模式设计................................................................................................... 手动操作,因为 GP 并未提供删除 Mirror 的标准命令,删除 Mirror 的操作,对于 6 版本来说,和 4 版本与 5 版本是不同的,因为 6 版本中,系统表中记录 Mirror 关系 的系统表设计已经发生了重大变化。 Mirror 使得数据库查询在 Primary 不可用时可以自动切换到 Mirror 上。为了 配置 Mirror,GP 系统需要有足够多的主机,从而可以确保作为冗余角色的0 码力 | 416 页 | 6.08 MB | 1 年前3
Greenplum 精粹文集能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big Date2.indd 1 16-11-22 下午3:38 2 由此,业界认识到对于海量数据需要一种新的计算模式来支持,这种 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce 计算框架还是 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum 正是在这一背景下产生的,借助于分 布式计算思想,Greenplum 实现了基于数据库的分布式数据存储和并 行计算(GoogleMapReduce Startup 公司,创始人家门口有 一棵青梅 ——greenplum,因此而得名)召集了十几位业界大咖(据 说来自 google、yahoo、ibm 和 TD),说干就干,花了一年多的时间 完成最初的版本设计和开发,用软件实现了在开放 X86 平台上的分布 式并行计算,不依赖于任何专有硬件,达到的性能却远远超过传统高 昂的专有系统。 Big Date2.indd 2 16-11-22 下午3:380 码力 | 64 页 | 2.73 MB | 1 年前3
Pivotal Greenplum 最佳实践分享二级分区可以用一级分区+Bitmap方式替代,例如按照“发生日期”做分区,然后在机构字段上将bitmap索引 • 对于1亿条记录以下的表不分区(对于小系统,该阀值适当调低) 索引使用: • 以数据批处理为主要功能的系统一般不需建索引 • 以并发查询为主要功能,特别OLTP查询(根据KEY,Attribute等作为筛选条件)的系统按照常用字段建索引。 • 建索引的方法:对于区别度高的字段,如账号、手机号码等使用B – Instance Number:4 CCB设置以上参数后,基本上没有OOM发生,唯一遇到的是left join超大表(400亿条记录)导致的,用户已优化SQL 资源队列设置没有一个统一的标准,具体的参数设置需要根据项目的实际运行情况, 可以通过gp_toolkit.gp_resqueue_status 观察到队列的使用情况,逐步调整参数到最优状态。 角色组和权限管理 单个失败不影响整个备份任务 可增量备份-识别AO的方式与gpcrondump一致,同时支持heap表的增备(是否发生过变化) 可指定并发数(同时多张表备份),可指定编码Encoding 乐观锁设计——单表尝试加锁失败即认为该表本次备份失败 命令简单易用——单命令无需部署,参数基本保持与gpcrondump一致,自劢完成全部必要的准备工作 恢复可选表清单,可指定条件恢复部分数据,可恢复到指定增备日期0 码力 | 41 页 | 1.42 MB | 1 年前3
Greenplum on Kubernetes
容器化MPP数据库通过PVC申请PV存储资源 ● StatefulSet ○ Pod网络地址不变 ○ Pod与PV映射关系不变 Kubernetes 网络资源 Service ● Service ○ 定义统一网络地址 ○ 分布式应用程序路由映射 ○ 负载均衡器 Greenplum on Kubernetes Network Interconnect Standby Pod Master Pod Kubernetes Greenplum on Kubernetes ● 存储计算分离 ○ PV持久化存储资源 ○ StatefulSet/Pod弹性扩展计算资源 ● 数据库服务层 ○ Service统一Master & Standby Master地址 ● 服务发现机制 ○ 所有节点地址名不变 ● 跨云能力 ○ 容器应用对基础设施透明 Greenplum Operator Kubernetes0 码力 | 33 页 | 1.93 MB | 1 年前3
Pivotal Greenplum 5: 新一代数据平台不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在多云环境(公 有云和私有云)中,也适用不同的本地配置。其大规模并行处理 (MPP) SQL 的设计核心是一个称为 GPORCA 的新一代查 询优化器。GPORCA 专为满足在多结构数据环境中进行高级分析的需求而设计,能够处理多种并发混合工作负载的复杂查 询。与旧式 MPP 数据库中常用的传统 RDBMS 查询优化器相比,GPORCA 大幅度地提高了查询性能。 Greenplum 5 带来了多项产品改进和新增功能,在管理数据和对数据库中存储的信息应用数据 科学、分析、报告和数据洞察方法方面,这些功能对大多数客户都很有帮助。Greenplum 解决方案的架构设计目的是管理 非常复杂的查询,以及为符合 ANSI 标准的 SQL 提供强有力的分析改进。通过自动对数据进行分区和并行运行查询,它让 服务器群集能够以单一数据超级计算机的方式运行,且性能比传统数据库或 Greenplum 代码库的原始 PostgreSQL 规划器的衍 生产品。PostgreSQL 规划器最初是为单节点 PostgreSQL 设计的,更适用于 OLTP 查询,而不是分析数据平台中长时间运 行的查询。尽管具有精心设计的连接排序之类的功能,但架构和设计选项导致维护和添加新功能变得越来越难。1 2010 年底,Greenplum 开始在内部开发一款新型查询优化器,并在 Greenplum0 码力 | 9 页 | 690.33 KB | 1 年前3
Greenplum数据仓库UDW - UCloud中立云计算服务商外部表并⾏加载数据 从hdfs加载数据 从mysql中导⼊数据 从oracle中导⼊数据 从ufile加载数据 开发指南 开发指南 1、连接数据库 2、数据库管理 3、模式管理 4、表格设计 5、加载数据 6、分区表 7、序列 8、索引 9、 ANALYZE/VACUUM 10、常⽤SQL⼤全 12、常⽤SQL命令 13、⽤⼾⾃定义函数 ⽬录 Greenplum数据仓库 testSchema CASCADE; 4、表格设计 、表格设计 udw 的表格创建类似于 postgresql,由于 udw 采⽤ mpp 数据,创建表格的时候可以选择不同的数据分布策略,不同的存储⽅式等等。创建表格的时候可以定义下⾯信息: 数据类型 表约束 数据分布策略 表存储模型 分区策略 外部表:udwfile、udwhdfs 下⾯分别根据上⾯的可选信息对表格设计进⾏分析。 4.1 数据类型 数据类型 ('BG'), DEFAULT PARTITION other ); 6.2查看分区表信息 查看分区表信息 通过 pg_partitions 视图,您可以查看分区表设计信息。下⾯⽰例可以查看 p_store_sales 表的分区设计信息: SELECT partitionboundary, partitiontablename, partitionname, partitionlevel, partitionrank0 码力 | 206 页 | 5.35 MB | 1 年前3
深度揭秘Greenplum开源数据库透明加密深度揭秘Greenplum开源数据库 透明加密 Greenplum 研发工程师 王淏舟 1. 我们所面临的问题 2. 基于pgcypto的数据加密方案 3. GPDB数据透明加密方案设计 4. GPDB数据透明加解密流程 5. 总结 我们所面临的问题 什么是Greenplum数据库 一款开源的HTAP数据库: • MPP架构 • 完整的事务+ACID+标准SQL支持 • 支持上千个节点的部署 https://github.com/greenplum-db/gpdb Recall GPDB数据透明加密方案设计 GPDB TDE GPDB透明加密 加密目标 • 表数据 • 预写日志数据 • 主从节点所有数据 • 索引及其他表辅助数据 • 磁盘缓存文件 设计目标 • 对用户和数据库透明 • 高性能,使用CPU加密指令集 • 内核原生 GPDB透明加密 加密 Planer0 码力 | 48 页 | 10.19 MB | 1 年前3
并行不悖- OLAP 在互联网公司的实践与思考表定义过大 Ø 表类型单一 Ø 表的散列键不恰当 Ø 分区表的分区键性能不佳 • 加载易出现问题 Ø 文件加载出现特殊字符 Ø 数据校验标准问题 35 Greenplum开发规范 业务库表设计规范 • GP中表的范围 Ø 最大时间为年表 Ø 数据量小,可用单表 • 多种表类型 Ø 堆表 (选好常用列作为三列键) Ø 分区表 (按照 yyyymmdd 分区,建议都添加 datenum Greenplum扩展规划 六 39 Greenplum扩展规划 整体扩展思路 • OLAP三大模块不断完善 Ø 通过dbsync程序,实现数据传输和加载优化 Ø 对于Greenplum上的架构和设计不断优化 Ø 继续建设多样化的postgresql数据集市,满足不同需求 • 优化现有业务的调度实现 Ø 时间周期的考量 Ø 并发与功能实现的权衡 Ø 增强任务可控性和可度量性 • 支持符合条件的新业务0 码力 | 43 页 | 9.66 MB | 1 年前3
共 13 条
- 1
- 2













