积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(6)Greenplum(6)

语言

全部中文(简体)(6)

格式

全部PDF文档 PDF(6)
 
本次搜索耗时 0.030 秒,为您找到相关结果约 6 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Greenplum 精粹文集

    据,数据在爆发式增长,这些海量数据急需新的计算方式,需要一场 计算方式的革命。 传统的主机计算模式在海量数据面前,除了造价昂贵外,在技术上也 难于满足数据计算性能指标,传统主机的 Scale-up 模式遇到了瓶颈, SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 建立在 Share-nothing 无共享架构上,让每一颗 CPU 和 每一块磁盘 IO 都运转起来,无共享架构将这种并行处理发挥到极致。 相比一些其它传统数据仓库的 Sharedisk 架构,后者最大瓶颈就是在 IO 吞吐上,在大规模数据处理时,IO 无法及时 feed 数据给到 CPU, CPU 资源处于 wait 空转状态,无法充分利用系统资源,导致 SQL 效 率低下: 一台内置 16 块 SAS 16-11-22 下午3:38 Greenplum 精粹文集 11 最 后, 也 许 你 会 有 问 题,Greenplum 采 用 Master-slave 架 构, Master 是否会成为瓶颈?完全不用担心,Greenplum 所有的并行任务 都是在 Segment 数据节点上完成后,Master 只负责生成和优化查询 计划、派发任务、协调数据节点进行并行计算。 按照我们在用户现场观察到的,Master
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum 架构概览

    Master-Segment 则会同时进⾏数据分区(⽔平扩展)和复制(冗余) 分区与分⽚ 在项⽬初期,我们使⽤⼀张表 T 存储数据。随着业务的增多,单表出现性能瓶颈,因⽽将 T ⽔平拆分成多个表进⾏存储,这个过程通常称为分区。紧接着,单⼀ 的数据库实例出现瓶颈,因此需要使⽤多个节点创建多个数据库实例,再按照某种规则将数据尽可能均匀地分布到各个节点上 ,这个过程通常称之为分⽚ GP 同时⽀持数据的分⽚和分区,具体的分⽚和分区规则将会
    0 码力 | 1 页 | 734.79 KB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    Standby)是不能接受连接请求和 SQL 访问的。虽然只 有一个 Master,就目前已有用户的使用情况来看,即便是编者有幸参与建设的 192 台计算节点的集群,Master 的资源依然很空闲,并不会成为性能的瓶颈,同时,因为 是单 Master,可以最大限度的规避多 Master 架构的系统表频繁不一致的缺陷。 GP 是基于 PostgreSQL 发展而来,用户端可以如同访问 PostgreSQL 那样与 gpfdist 是如何配合,以实现高速数据装载的,该模式 的性能是完全线性扩展的,数据直接在 gpfdist 和 Primary 之间并行传输,数据的 重分布直接在 Primary 之间完成,整个架构没有瓶颈点。 管理与监控 对 GP 系统的管理,可以通过一系列的命令行来实现,它们都存放在$GPHOME/bin 目录下。GP 提供的命令可以实现如下的管理任务:  在多个主机上批量执行命令(gpssh) GP是一个分布式数据库软件,整体数据库的性能依赖于硬件的性能和各种硬件资 源的均衡。如果过度强调某一方面硬件资源,会造成资源的不均衡,也是对资源的浪费, 同时也是投资的浪费。对于OLAP应用来说,最大的瓶颈是磁盘性能(而不是磁盘容量), 因此,所有其他资源都应该围绕磁盘性能来均衡配置。这些资源包括CPU主频与Core 数量、内存容量、网络带宽、Raid性能等,但基本宗旨是,IO资源必须绝对富余,CPU
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Greenplum 6新特性: 在线扩容工具GPexpand剖析

    ▪ 对表执行expand之后要更新gpexpand.status_detail表的状态 ▪ Greenplum 5及之前的版本对表的更新操作是串行的,所以大量小表做expand会在 更新状态表时遇到瓶颈 ▪ Greenplum 6中因为全局死锁检测的引入可以对heap表做并行更新 改进与实现 • 扩容期间对查询的影响 – 新增节点阶段无法修改catalog – 对于正在重分布的表的读写访问均会被阻塞
    0 码力 | 37 页 | 1.12 MB | 1 年前
    3
  • pdf文档 Greenplum数据库架构分析及5.x新功能分享

    10月 9月 8月 用户自定义数据存储格式 14 Pivotal Confidential–Inter nal Use Only 大规模并行数据加载 • 高速数据导入和导出 – 主节点不是瓶颈 – 10+ TB/小时/Rack – 线性扩展 • 低延迟 – 加载后立刻可用 – 不需要中间存储 – 不需要额外数据处理 • 导入/导出 到&从: – 文件系统 – 任意 ETL 产品 –
    0 码力 | 44 页 | 8.35 MB | 1 年前
    3
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    开放式系统:在通用系统和开放源软件的基础上创建 前提条件 – 硬件:基于开放式标准硬件 – 软件:Postgres和Greenplum – 体系架构:海量并行处理体系,针对商务智能/数据仓库 进行了优化,解决了所有数据流瓶颈问题 Greenplum数据引擎 全球最强大的分析数据仓库 海量并行查询 • 可以比以往更快地获取 查询结果 • 在数据增长的同时确保 高性能分析 统一的分析处理功能 • 为数据仓库、市场、
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
共 6 条
  • 1
前往
页
相关搜索词
Greenplum精粹文集架构概览Database管理管理员指南特性在线扩容工具GPexpand剖析数据据库数据库分析功能分享一代新一代数据管理数据分析解决方案解决方案
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩