 Greenplum 6: 混合负载的理想数据平台Greenplum 6: 混合负载的理想数据平台 高小明 全球领先的开源MPP大数据平台 可扩展性 ACID事务 VS 分布式 简单易用 VS 结构化 半结构非结构化 VS 事务型 分析型 VS MPP - massively parallel processing - 大规模并行处理 master standby primary Use Only 卓越的OLAP特性 列式存储 分区、压缩 高级特性 递归查询、窗口函数 集成分析 多格式、多语言 Madlib: 机器学习 数据库内并行模型训练和预测、分类 ORCA 复杂查询优化器 成熟稳定 完备生态、支撑核心生产系统 13 Pivotal Confidential–Internal Use Only 列式存储 表‘SALES’ 表‘SALES’ ■ converged model = SELECT model.aggregation(…) FROM data table ENDWHILE 模型存储过程 … 广播 Segment 2 Segment n … Transition 函数 操作一小批数据并更新 模型状态 1 Merge 函数 2 Final函数 3 Segment0 码力 | 52 页 | 4.48 MB | 1 年前3 Greenplum 6: 混合负载的理想数据平台Greenplum 6: 混合负载的理想数据平台 高小明 全球领先的开源MPP大数据平台 可扩展性 ACID事务 VS 分布式 简单易用 VS 结构化 半结构非结构化 VS 事务型 分析型 VS MPP - massively parallel processing - 大规模并行处理 master standby primary Use Only 卓越的OLAP特性 列式存储 分区、压缩 高级特性 递归查询、窗口函数 集成分析 多格式、多语言 Madlib: 机器学习 数据库内并行模型训练和预测、分类 ORCA 复杂查询优化器 成熟稳定 完备生态、支撑核心生产系统 13 Pivotal Confidential–Internal Use Only 列式存储 表‘SALES’ 表‘SALES’ ■ converged model = SELECT model.aggregation(…) FROM data table ENDWHILE 模型存储过程 … 广播 Segment 2 Segment n … Transition 函数 操作一小批数据并更新 模型状态 1 Merge 函数 2 Final函数 3 Segment0 码力 | 52 页 | 4.48 MB | 1 年前3
 Greenplum 精粹文集,在技术上也 难于满足数据计算性能指标,传统主机的 Scale-up 模式遇到了瓶颈, SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum 正是在这一背景下产生的,借助于分 布式计算思想,Greenplum 实现了基于数据库的分布式数据存储和并 行计算(GoogleMapReduce 实现的是基于文件的分布式数据存储和 计算,我们会在后面比较这两种方法的优劣性)。 话说当年 Greenplum(当时还是一个 Startup 公司,创始人家门口有 一棵青梅 ——green ysql等等), 但是 Postgresql 是单实例数据库,怎么能在多个 X86 服务器上运行多 个实例且实现并行计算呢?为了这,Interconnnect 大神器出现了。在 那一年多的时间里,大咖们很大一部分精力都在不断的设计、优化、 开发 Interconnect 这个核心软件组件。最终实现了对同一个集群中多 个 Postgresql 实例的高效协同和并行计算,Interconnect 承载了并行0 码力 | 64 页 | 2.73 MB | 1 年前3 Greenplum 精粹文集,在技术上也 难于满足数据计算性能指标,传统主机的 Scale-up 模式遇到了瓶颈, SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum 正是在这一背景下产生的,借助于分 布式计算思想,Greenplum 实现了基于数据库的分布式数据存储和并 行计算(GoogleMapReduce 实现的是基于文件的分布式数据存储和 计算,我们会在后面比较这两种方法的优劣性)。 话说当年 Greenplum(当时还是一个 Startup 公司,创始人家门口有 一棵青梅 ——green ysql等等), 但是 Postgresql 是单实例数据库,怎么能在多个 X86 服务器上运行多 个实例且实现并行计算呢?为了这,Interconnnect 大神器出现了。在 那一年多的时间里,大咖们很大一部分精力都在不断的设计、优化、 开发 Interconnect 这个核心软件组件。最终实现了对同一个集群中多 个 Postgresql 实例的高效协同和并行计算,Interconnect 承载了并行0 码力 | 64 页 | 2.73 MB | 1 年前3
 Greenplum Database 管理员指南 6.2.1Greenplum 数据库 Master : GP 的控制节点/实例 Standby : GP 的备用控制节点/实例 Host(主机) : GP 的一台独立的机器设备 Instance : GP 的计算实例,很多时候也叫 Segment Primary : GP 的主计算实例 Mirror : GP 的镜像计算实例 MPP : 大规模并行处理 算子 : ........................................................................................ - 12 - 计算实例:Instance ......................................................................................... ..................................................................................... - 21 - 数据是如何存储的 .................................................................................................0 码力 | 416 页 | 6.08 MB | 1 年前3 Greenplum Database 管理员指南 6.2.1Greenplum 数据库 Master : GP 的控制节点/实例 Standby : GP 的备用控制节点/实例 Host(主机) : GP 的一台独立的机器设备 Instance : GP 的计算实例,很多时候也叫 Segment Primary : GP 的主计算实例 Mirror : GP 的镜像计算实例 MPP : 大规模并行处理 算子 : ........................................................................................ - 12 - 计算实例:Instance ......................................................................................... ..................................................................................... - 21 - 数据是如何存储的 .................................................................................................0 码力 | 416 页 | 6.08 MB | 1 年前3
 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplumeenplum 6 及未来发布的 Greenplum 7 丰富的 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 欧拉开源操作系统是一款面向数字基础设施的操作系统,支持服务器、云计算、边缘计算、嵌入式等应用场景,支持多 操作系统支持多设备,应用一次开发覆盖全场景。 openEuler 平台架构 openEuler 是覆盖全场景的创新平台,在引领内核创新,夯实云化基座的基础上,面向计算架构互联总线、存储介质 发展新趋势,创新分布式、实时加速引擎和基础服务,结合边缘、嵌入式领域竞争力探索,打造全场景协同的面向数字 基础设施的开源操作系统。 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum 白皮书 7 白皮书 | 7 1. 引领内核创新 云原生调度增强:针对云场景在线和离线业务混合部署场景,创新 CPU 调度算法保障在线业务对 CPU 的实时抢占及抖 动抑制,创新业务优先级 00M 内存回收算法保障在线业务安全可靠运行。 • 新文件系统 EulerFS:面向非易失性内0 码力 | 17 页 | 2.04 MB | 1 年前3 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplumeenplum 6 及未来发布的 Greenplum 7 丰富的 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 欧拉开源操作系统是一款面向数字基础设施的操作系统,支持服务器、云计算、边缘计算、嵌入式等应用场景,支持多 操作系统支持多设备,应用一次开发覆盖全场景。 openEuler 平台架构 openEuler 是覆盖全场景的创新平台,在引领内核创新,夯实云化基座的基础上,面向计算架构互联总线、存储介质 发展新趋势,创新分布式、实时加速引擎和基础服务,结合边缘、嵌入式领域竞争力探索,打造全场景协同的面向数字 基础设施的开源操作系统。 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum 白皮书 7 白皮书 | 7 1. 引领内核创新 云原生调度增强:针对云场景在线和离线业务混合部署场景,创新 CPU 调度算法保障在线业务对 CPU 的实时抢占及抖 动抑制,创新业务优先级 00M 内存回收算法保障在线业务安全可靠运行。 • 新文件系统 EulerFS:面向非易失性内0 码力 | 17 页 | 2.04 MB | 1 年前3
 Greenplum 分布式数据库内核揭秘李正龙 Confidential │ ©2021 VMware, Inc. Agenda 2 - Greenplum 分布式数据库简介 - Greenplum 集群化概述 - 分布式数据存储与多态存储 - 分布式查询优化器与执行器 - Greenplum 中文社区 3 Confidential │ ©2021 VMware, Inc. Greenplum 分布式数据库简介 Features PostgreSQL 所实现的大规模并行处理(MPP)开源数据平台,具有良好的弹性 和线性拓展能力,内置并行存储、并行通信、并行计算和并行优化功能,兼容 SQL 标准。拥有独 特的高效的 ORCA 优化器,具有强大、高效的 PB 级数据存储、处理和实时分析能力,同时支持 OLTP 型业务的混合负载。 Greenplum 分布式数据库简介 5 Confidential │ ©2021 VMware Segment 提供高可用支持 7 Confidential │ ©2021 VMware, Inc. Greenplum 分布式数据存储与多态存储 Hash/Randomly/Replicated Confidential │ ©2021 VMware, Inc. 8 数据存储分布化是分布式数据库要解决的第一个问题。 通过将海量数据分散到多个节点上,一方面大大降低了单个节点处理的数据量,另一方面也为处理0 码力 | 31 页 | 3.95 MB | 1 年前3 Greenplum 分布式数据库内核揭秘李正龙 Confidential │ ©2021 VMware, Inc. Agenda 2 - Greenplum 分布式数据库简介 - Greenplum 集群化概述 - 分布式数据存储与多态存储 - 分布式查询优化器与执行器 - Greenplum 中文社区 3 Confidential │ ©2021 VMware, Inc. Greenplum 分布式数据库简介 Features PostgreSQL 所实现的大规模并行处理(MPP)开源数据平台,具有良好的弹性 和线性拓展能力,内置并行存储、并行通信、并行计算和并行优化功能,兼容 SQL 标准。拥有独 特的高效的 ORCA 优化器,具有强大、高效的 PB 级数据存储、处理和实时分析能力,同时支持 OLTP 型业务的混合负载。 Greenplum 分布式数据库简介 5 Confidential │ ©2021 VMware Segment 提供高可用支持 7 Confidential │ ©2021 VMware, Inc. Greenplum 分布式数据存储与多态存储 Hash/Randomly/Replicated Confidential │ ©2021 VMware, Inc. 8 数据存储分布化是分布式数据库要解决的第一个问题。 通过将海量数据分散到多个节点上,一方面大大降低了单个节点处理的数据量,另一方面也为处理0 码力 | 31 页 | 3.95 MB | 1 年前3
 Pivotal Greenplum 最佳实践分享1000000000  kernel.sem = 250 512000 100 2048  Redhat 6.2以后,内核增加了hugepage大页内存管理,关闭hugepage可以提高混合负载管理性能 设置办法:修改local脚本 For SUSE /etc/init.d/boot.local For RHLE /etc/rc.d/rc.local 追加内容: 15 gp_workfile_limit_per_query 256GB 256GB superuser_reserved_connections 50 NA Instance实例数的配置建议 • Instance是GPDB的最小并行单元,每个Segment 节点一般配置4~8个Instance,初始化完成后很 难修改,需要提前规划; • 每个Instance都是一套独立的进程,当客户端 Update/delete操作后,数据库不会自动释放这些空间,这些垃圾空间的回收方 式: 1)Vacuum 2)Vacuum full 3)REORGANIZE • 不进行垃圾空间回收的影响 o 垃圾空间浪费存储空间 o 垃圾空间影响查询性能 注:delete all用truncate代替,truncate无需回收垃圾空间 垃圾空间回收  Vacuum:标记垃圾空间为可再利用0 码力 | 41 页 | 1.42 MB | 1 年前3 Pivotal Greenplum 最佳实践分享1000000000  kernel.sem = 250 512000 100 2048  Redhat 6.2以后,内核增加了hugepage大页内存管理,关闭hugepage可以提高混合负载管理性能 设置办法:修改local脚本 For SUSE /etc/init.d/boot.local For RHLE /etc/rc.d/rc.local 追加内容: 15 gp_workfile_limit_per_query 256GB 256GB superuser_reserved_connections 50 NA Instance实例数的配置建议 • Instance是GPDB的最小并行单元,每个Segment 节点一般配置4~8个Instance,初始化完成后很 难修改,需要提前规划; • 每个Instance都是一套独立的进程,当客户端 Update/delete操作后,数据库不会自动释放这些空间,这些垃圾空间的回收方 式: 1)Vacuum 2)Vacuum full 3)REORGANIZE • 不进行垃圾空间回收的影响 o 垃圾空间浪费存储空间 o 垃圾空间影响查询性能 注:delete all用truncate代替,truncate无需回收垃圾空间 垃圾空间回收  Vacuum:标记垃圾空间为可再利用0 码力 | 41 页 | 1.42 MB | 1 年前3
 Greenplum数据库架构分析及5.x新功能分享2013 Pivotal. All rights reserved. Greenplum 简介 4 Pivotal Confidential–Inter nal Use Only GPDB:为大数据存储、计算、挖掘而设计  标准 SQL 数据库:ANSI SQL 2008 标准,OLAP,JDBC/ODBC  支持ACID、分布式事务  分布式数据库:线性扩展,支持上百物理节点  企业级数据库:全球大客户超过 无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存) 多种压缩,多级分区表 Use Only MPP(大规模并行处理)无共享体系架构 从主节点 … 主节点 SQL • 主节点和从主节点,主节点负责协调整个集群 • 一个数据节点可以配置多个节点实例(Segment Instances) • 节点实例并行处理查询(SQL) • 数据节点有自己的CPU、磁盘和 内存(Share nothing) • 高速Interconnect处理持续 数据流(Pipelining)0 码力 | 44 页 | 8.35 MB | 1 年前3 Greenplum数据库架构分析及5.x新功能分享2013 Pivotal. All rights reserved. Greenplum 简介 4 Pivotal Confidential–Inter nal Use Only GPDB:为大数据存储、计算、挖掘而设计  标准 SQL 数据库:ANSI SQL 2008 标准,OLAP,JDBC/ODBC  支持ACID、分布式事务  分布式数据库:线性扩展,支持上百物理节点  企业级数据库:全球大客户超过 无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存) 多种压缩,多级分区表 Use Only MPP(大规模并行处理)无共享体系架构 从主节点 … 主节点 SQL • 主节点和从主节点,主节点负责协调整个集群 • 一个数据节点可以配置多个节点实例(Segment Instances) • 节点实例并行处理查询(SQL) • 数据节点有自己的CPU、磁盘和 内存(Share nothing) • 高速Interconnect处理持续 数据流(Pipelining)0 码力 | 44 页 | 8.35 MB | 1 年前3
 Greenplum 介绍Greenplum 介绍 Greenplum 是全球领先的开源大数据平台,是能够提供包含实时处理、弹性扩容、混合负载、云 原生和集成数据分析等强大功能的大数据引擎。 著名分析机构 Gartner 2019 年报告中,在经典数据分析领域 Greenplum 全球排名第三,实时分 析领域全球排名并列第四。Greenplum 是两个领域中排名前十的产品中的唯一一款开源产品。 性和线性扩展能力,并内置 并行存储、并行通讯、并行计算和优化技术。同时,Greenplum 还兼容 SQL 标准,具备强大、 高效、安全的 PB 级结构化、半结构化和非结构化数据存储、处理和实时分析能力,可部署于企 业裸机、容器、私有云和公有云中。值得一提的是,作为 OLAP 型的大数据平台, Greenplum 同 时还能够支持涵盖 OLTP 型业务的混合负载,从而帮助客户真正打通业务-数据-洞见-业务的闭环。 KV)还是非结构化, 譬如文本数据、GIS 数据、图数据等。 ● 具有强大内核的平台:Greenplum 具有强大的内核技术,包括数据水平分布、并行查询执 行、专业优化器、线性扩展能力、多态存储、资源管理、高可用、高速数据加载等。 ● 具备强大灵活性和可扩展性的平台: 支持扩展(Extension)、自定义类型和函数、PXF 和外部表技术。可以使用多种语言实现用户自定义函数和聚集,包括0 码力 | 3 页 | 220.42 KB | 1 年前3 Greenplum 介绍Greenplum 介绍 Greenplum 是全球领先的开源大数据平台,是能够提供包含实时处理、弹性扩容、混合负载、云 原生和集成数据分析等强大功能的大数据引擎。 著名分析机构 Gartner 2019 年报告中,在经典数据分析领域 Greenplum 全球排名第三,实时分 析领域全球排名并列第四。Greenplum 是两个领域中排名前十的产品中的唯一一款开源产品。 性和线性扩展能力,并内置 并行存储、并行通讯、并行计算和优化技术。同时,Greenplum 还兼容 SQL 标准,具备强大、 高效、安全的 PB 级结构化、半结构化和非结构化数据存储、处理和实时分析能力,可部署于企 业裸机、容器、私有云和公有云中。值得一提的是,作为 OLAP 型的大数据平台, Greenplum 同 时还能够支持涵盖 OLTP 型业务的混合负载,从而帮助客户真正打通业务-数据-洞见-业务的闭环。 KV)还是非结构化, 譬如文本数据、GIS 数据、图数据等。 ● 具有强大内核的平台:Greenplum 具有强大的内核技术,包括数据水平分布、并行查询执 行、专业优化器、线性扩展能力、多态存储、资源管理、高可用、高速数据加载等。 ● 具备强大灵活性和可扩展性的平台: 支持扩展(Extension)、自定义类型和函数、PXF 和外部表技术。可以使用多种语言实现用户自定义函数和聚集,包括0 码力 | 3 页 | 220.42 KB | 1 年前3
 Pivotal Greenplum 5: 新一代数据平台专为满足在多结构数据环境中进行高级分析的需求而设计,能够处理多种并发混合工作负载的复杂查 询。与旧式 MPP 数据库中常用的传统 RDBMS 查询优化器相比,GPORCA 大幅度地提高了查询性能。 Pivotal Greenplum 5:新一代数据平台 作为重要的新版本,Pivotal Greenplum 5 带来了多项产品改进和新增功能,在管理数据和对数据库中存储的信息应用数据 科学、分析、报告和数据洞察方法方 PostgreSQL 新增功能。 新一代 数据平台 IT 人员 开发 人员 业务 分析师 数据 科学家 灵活 部署 数据源和数据管道 Spring Cloud Data Flow ETL 本地存储 HDFSS 云对象 存储 GemFire Spark 其他 RDBMSes 多结构数据 PIVOTAL GREENPLUM 平台 原生接口 分析应用 用户 JDBC、OBBC Teradata SQL 完全 托管云 本地 BI / 报告 自定义应用 机器学习 AI SQL 大规模 并行处理 (MPP) PB 级数据 加载 查询 优化器 (GPORCA) Workload Manager 多态存储 Command Center SQL 兼容性 (Hyper-Q) PostgreSQL 内核 JSON、Apache AVRO、Apache Parquet 和 XML 结构化数据 pivotal0 码力 | 9 页 | 690.33 KB | 1 年前3 Pivotal Greenplum 5: 新一代数据平台专为满足在多结构数据环境中进行高级分析的需求而设计,能够处理多种并发混合工作负载的复杂查 询。与旧式 MPP 数据库中常用的传统 RDBMS 查询优化器相比,GPORCA 大幅度地提高了查询性能。 Pivotal Greenplum 5:新一代数据平台 作为重要的新版本,Pivotal Greenplum 5 带来了多项产品改进和新增功能,在管理数据和对数据库中存储的信息应用数据 科学、分析、报告和数据洞察方法方 PostgreSQL 新增功能。 新一代 数据平台 IT 人员 开发 人员 业务 分析师 数据 科学家 灵活 部署 数据源和数据管道 Spring Cloud Data Flow ETL 本地存储 HDFSS 云对象 存储 GemFire Spark 其他 RDBMSes 多结构数据 PIVOTAL GREENPLUM 平台 原生接口 分析应用 用户 JDBC、OBBC Teradata SQL 完全 托管云 本地 BI / 报告 自定义应用 机器学习 AI SQL 大规模 并行处理 (MPP) PB 级数据 加载 查询 优化器 (GPORCA) Workload Manager 多态存储 Command Center SQL 兼容性 (Hyper-Q) PostgreSQL 内核 JSON、Apache AVRO、Apache Parquet 和 XML 结构化数据 pivotal0 码力 | 9 页 | 690.33 KB | 1 年前3
 Greenplum 新一代数据管理和数据分析解决方案com www.greenplum-china.com Greenplum:简介 Greenplum数据引擎软件为新一代数 据仓库所需的大规模数据和复杂查询功 能所设计 3 推动数据依赖型企业的发展 全球各地的一些Greenplum客户 4 亚太地区 欧洲、中东、非洲 北美 中国的客户 5 金融 交通 互联网 其它 Teradata Netezza Oracle Greenplum 万亿字节 千兆字节 行业商务智能解决方案的实例 政府 电信 金融服务 公民服务 国家安全 电子政务 法规实施和监管 人力资本管理 信息传播 合规性报告 资产组合分析 客户报表 电汇通知 分部记分卡 客户关系管理、收 购和盈利率 欺诈检测 欺诈分析 客户流失分析 响应时间 流量分析 产品关联/捆绑 零售 存储运营分析 客户忠诚度计划 协作规划和预估 网络运算的发展速度已经超过了主流数据库 • 海量规模 • 高性价比 • 高效率 数据库管理系统(DBMS)的 规模/容量 11 需要采用一种新的方法 •“一切皆可商用”:商业即用型x86 服务器、存储设备、网络 •通过软件很容易将处理能力扩展到 1000s的内核/系统 Greenplum • “黑盒子” • “大铁箱” • 大磁盘 过去Google™ 曾经用来实现信息搜索功能的技术,0 码力 | 45 页 | 2.07 MB | 1 年前3 Greenplum 新一代数据管理和数据分析解决方案com www.greenplum-china.com Greenplum:简介 Greenplum数据引擎软件为新一代数 据仓库所需的大规模数据和复杂查询功 能所设计 3 推动数据依赖型企业的发展 全球各地的一些Greenplum客户 4 亚太地区 欧洲、中东、非洲 北美 中国的客户 5 金融 交通 互联网 其它 Teradata Netezza Oracle Greenplum 万亿字节 千兆字节 行业商务智能解决方案的实例 政府 电信 金融服务 公民服务 国家安全 电子政务 法规实施和监管 人力资本管理 信息传播 合规性报告 资产组合分析 客户报表 电汇通知 分部记分卡 客户关系管理、收 购和盈利率 欺诈检测 欺诈分析 客户流失分析 响应时间 流量分析 产品关联/捆绑 零售 存储运营分析 客户忠诚度计划 协作规划和预估 网络运算的发展速度已经超过了主流数据库 • 海量规模 • 高性价比 • 高效率 数据库管理系统(DBMS)的 规模/容量 11 需要采用一种新的方法 •“一切皆可商用”:商业即用型x86 服务器、存储设备、网络 •通过软件很容易将处理能力扩展到 1000s的内核/系统 Greenplum • “黑盒子” • “大铁箱” • 大磁盘 过去Google™ 曾经用来实现信息搜索功能的技术,0 码力 | 45 页 | 2.07 MB | 1 年前3
共 26 条
- 1
- 2
- 3













