Greenplum Database 管理员指南 6.2.1........................................................................................ - 62 - 转移查询的资源组 .............................................................................................. ................ - 177 - 第十章:数据查询 .................................................................................................................. - 179 - 理解 GP 的查询处理 ............................. ................................. - 197 - 验证查询是否使用了 Orca ................................................................................... - 198 - 定义查询.............................................0 码力 | 416 页 | 6.08 MB | 1 年前3
Pivotal Greenplum 5: 新一代数据平台.................................................................................6 GPORCA:Pivotal 查询优化器更新 ............................................................................................. .............................................................................................7 架构化查询语言性能提升 ............................................................................................ RDBMS 查询优化器相比,GPORCA 大幅度地提高了查询性能。 Pivotal Greenplum 5:新一代数据平台 作为重要的新版本,Pivotal Greenplum 5 带来了多项产品改进和新增功能,在管理数据和对数据库中存储的信息应用数据 科学、分析、报告和数据洞察方法方面,这些功能对大多数客户都很有帮助。Greenplum 解决方案的架构设计目的是管理 非常复杂的查询,以及为符合0 码力 | 9 页 | 690.33 KB | 1 年前3
Greenplum数据仓库UDW - UCloud中立云计算服务商getMessage()); System.exit(0); } System.out.println("Opened database successfully"); } } ⽰例程序⼆:java连接UDW,执⾏查询操作 PostgreSQLJDBC2.java import java.sql.Connection; import java.sql.DriverManager; import java.sql 25, 'Texas', 15000.00 )"); conn.commit() print "Records created successfully"; conn.close() ⽰例4. 查询 select.py #!/usr/bin/python 快速上⼿ Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 27/206 import pg_last_error($db); } else { echo "Records created successfully\n"; } pg_close($db); ?> ⽰例4. 查询 select.php0 码力 | 206 页 | 5.35 MB | 1 年前3
Greenplum 新一代数据管理和数据分析解决方案官方网站: www.greenplum.com www.greenplum-china.com Greenplum:简介 Greenplum数据引擎软件为新一代数 据仓库所需的大规模数据和复杂查询功 能所设计 3 推动数据依赖型企业的发展 全球各地的一些Greenplum客户 4 亚太地区 欧洲、中东、非洲 北美 中国的客户 5 金融 交通 互联网 其它 Teradata Netezza Credibility Aging Proprietary Legacy Scalable, Open Software-Based Commodity HW • 用户人数 • 安全度 • 查询、报告、分析的数量 • 数据的高度多样性 • 大量定制数据 • 监管要求 商务智能/数据仓库发展趋势 一切都在增长! 数据仓库工作量:数据膨胀 面临的新难题是如何处理大规模数据 过去的10年 软件:Postgres和Greenplum – 体系架构:海量并行处理体系,针对商务智能/数据仓库 进行了优化,解决了所有数据流瓶颈问题 Greenplum数据引擎 全球最强大的分析数据仓库 海量并行查询 • 可以比以往更快地获取 查询结果 • 在数据增长的同时确保 高性能分析 统一的分析处理功能 • 为数据仓库、市场、 ELT、文本挖掘、统计 运算提供统一的平台 • 可以使用SQL、 MapReduce、R等在0 码力 | 45 页 | 2.07 MB | 1 年前3
Greenplum数据库架构分析及5.x新功能分享Greenplum 架构 6 Pivotal Confidential–Inter nal Use Only 平台概况 产品特性 客户端访问和工具 多级容错机制 无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 MPP(大规模并行处理)无共享体系架构 从主节点 … 主节点 SQL • 主节点和从主节点,主节点负责协调整个集群 • 一个数据节点可以配置多个节点实例(Segment Instances) • 节点实例并行处理查询(SQL) • 数据节点有自己的CPU、磁盘和 内存(Share nothing) • 高速Interconnect处理持续 数据流(Pipelining) Interconnect Segment Motion Table Scan Hash Hash Join Gather Motion SLICE 3 SLICE 1 SLICE 2 SEGMENT 2 SEGMENT 1 生成并行查询计划 12 Pivotal Confidential–Inter nal Use Only master segment1 segment2 QD process slice 3 QE process0 码力 | 44 页 | 8.35 MB | 1 年前3
Greenplum 精粹文集那一年多的时间里,大咖们很大一部分精力都在不断的设计、优化、 开发 Interconnect 这个核心软件组件。最终实现了对同一个集群中多 个 Postgresql 实例的高效协同和并行计算,Interconnect 承载了并行 查询计划生产和 Dispatch 分发(QD)、协调节点上 QE 执行器的并 行工作、负责数据分布、Pipeline 计算、镜像复制、健康探测等等诸 多任务。 在 Greenplum 开源以前,据说一些厂商也有开发 Madlib、R 的支持也很好。这一点上 MYSQL 就差的很远,很多分 析功能都不支持,而 Greenplum 作为 MPP 数据分析平台,这些功 能都是必不可少的。 2) Mysql 查询优化器对于子查询、复制查询如多表关联、外关联的支 持等较弱,特别是在关联时对于三大 join 技术:hash join、merge join、nestloop join 的支持方面,Mysql 只支持最后一种 nestloop Postgresql 没有提供的: ·外部表并行数据加载 ·可更新数据压缩表 ·行、列混合存储 ·数据表多级分区 ·Bitmap 索引 ·Hadoop 外部表 ·Gptext 全文检索 ·并行查询计划优化器和 Orca 优化器 ·Primary/Mirror 镜像保护机制 ·资源队列管理 ·WEB/Brower 监控 Big Date2.indd 7 16-11-22 下午3:380 码力 | 64 页 | 2.73 MB | 1 年前3
完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum适应性强在 MPP 数据库领域独占鳌头,基于 Shared Nothing 的 MPP 高性能系统架构,Greenplum 可以将 PB 级的数据仓库负 载分解,并使用所有的系统资源并行处理单个查询。同时 Greenplum 具备数据库 ACID 特性,运行符合 ANSI 标准 的 SQL,可以让服务器群集能够以单一数据超级计算机的方式运行,且性能比传统数据库或其他同类平台高出数十甚 至数百倍。其多种分析扩展功能支持 和 INSERT 提升比较 大。一个优化有关 procarray 锁,另一个优化和事务有关,大多数 OLTP 查询带有主键或者分布键,这种查询不需要 两阶段提交(2PC)。 集群在线扩容 Greenplum 6 实现了不停库在线增加新节点, 期间不会中断正在运行的所有查询;另外采用了 Jump Consistent Hash 的一致性哈希算法, 在数据重分布期间,每个旧节点仅移动出需要移动的数据到新节点上 ,这些功能将展现奇效。支持在 Apache Solr 数据库内实施 GPText 完成索引和搜索功能,其中包含用于国际文本和社交媒体文本的自定义分词器和一个通用查询处理器(可接 受来自支持的 Solr 查询处理器的采用混合语法的查询)。PostGIS 程序包是 PostgreSQL 的空间数据库扩展,可让地 理信息系统 (GIS) 对象存储在数据库中。Greenplum PostGIS 扩展包括支持使用基于0 码力 | 17 页 | 2.04 MB | 1 年前3
Pivotal Greenplum 最佳实践分享成后很 难修改,需要提前规划; • 每个Instance都是一套独立的进程,当客户端 发起一个请求时,每个Instance都将FORK子进 程并行工作; • 对于并发请求高、面向于复杂的灵活查询的系 统,建议每个Segment配置4个或以下Instance, 这样来保证每个Instance所需资源,保证系统 系统运行稳定性,例如,减少OOM发生的概率; • 对于以批处理、串行工作为主的系统,可以配 M16 M17 M18 M19 M20 M21 M23 M24 M22 统计信息收集 对于系统表和用户表需要收集统计信息,GPDB的查询计划是cost base的,统计信息的准确性对查询 计划的优劣有很大影响; 对于字段数较多的表,可关闭gp_autostate_mode (on_no_stats=>none),仅对必要列执行Analyze, 只在结果中返回的列无需收集统计信息; 些垃圾空间的回收方 式: 1)Vacuum 2)Vacuum full 3)REORGANIZE • 不进行垃圾空间回收的影响 o 垃圾空间浪费存储空间 o 垃圾空间影响查询性能 注:delete all用truncate代替,truncate无需回收垃圾空间 垃圾空间回收 Vacuum:标记垃圾空间为可再利用 Vacu0 码力 | 41 页 | 1.42 MB | 1 年前3
Greenplum 分布式数据库内核揭秘Confidential │ ©2021 VMware, Inc. Agenda 2 - Greenplum 分布式数据库简介 - Greenplum 集群化概述 - 分布式数据存储与多态存储 - 分布式查询优化器与执行器 - Greenplum 中文社区 3 Confidential │ ©2021 VMware, Inc. Greenplum 分布式数据库简介 Features Confidential 个 Standby Coordinator 节点以及多个 Segment 节点组成 l Coordinator 是整个数据库的入口,客户端只会连接 至 Coordinator 节点,并执行相关的查询操作 l Standby 节点为 Coordinator 提供高可用支持 l Mirror 则为 Segment 提供高可用支持 7 Confidential │ ©2021 VMware, Inc 在合理的避免数据倾斜的分布键时,即可采用随机分布的方式。 随机分布与复制分布 复制分布则表示整张表在每个节点上都有一份完整的拷贝,假设我们有 100 个节点,复制表则会将 数据保存 100 份。复制表可避免生成分布式查询计划,而是生成本地计划,从而避免数据在集群的 不同节点间移动。 Confidential │ ©2021 VMware, Inc. 12 除了支持数据在不同的 segment 节点上水平分布以外,还支持在单个节点按照不同的标准进行分0 码力 | 31 页 | 3.95 MB | 1 年前3
Greenplum 6: 混合负载的理想数据平台SELECT customer, amount FROM orders JOIN customer USING (cust_id) WHERE date=2008; 生成并行查询计划 8 Pivotal Confidential–Internal Use Only 执行并行计划 Standby Master … Master Host Interconnect 分区、压缩 高级特性 递归查询、窗口函数 集成分析 多格式、多语言 Madlib: 机器学习 数据库内并行模型训练和预测、分类 ORCA 复杂查询优化器 成熟稳定 完备生态、支撑核心生产系统 13 Pivotal Confidential–Internal Use Only 列式存储 表‘SALES’ 表‘SALES’ ■ 更适合压缩 ■ 查询部分列时速度快 ■ 不同列可以使用不同压缩方式 Segment 2D Segment 3A Segment 3B Segment 3C Segment 3D 15 Pivotal Confidential–Internal Use Only 递归查询 表‘SALES’ 表‘SALES’ ■ 层次结构 ■ 树状结构 WITH RECURSIVE included_parts(sub_part, part, quantity) AS (0 码力 | 52 页 | 4.48 MB | 1 年前3
共 23 条
- 1
- 2
- 3













