积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(22)Greenplum(22)

语言

全部中文(简体)(22)

格式

全部PDF文档 PDF(22)
 
本次搜索耗时 0.034 秒,为您找到相关结果约 22 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum

    白皮书 开源 Greenplum 新篇章: 兼容欧拉开源操作系统的数据平台 支持国产生态的高级分析数据平台 作者:Greenplum 中文社区、 欧拉开源社区 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum 白皮书 ........................................................................................ 4 欧拉开源操作系统 .................................................................................................. ........................................................................................ 6 欧拉开源操作系统平台架构 ..............................................................................................
    0 码力 | 17 页 | 2.04 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big Date2.indd 1 16-11-22 下午3:38 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 时是千兆以太网)组建的 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce 计算框架还是 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum google、yahoo、ibm 和 TD),说干就干,花了一年多的时间 完成最初的版本设计和开发,用软件实现了在开放 X86 平台上的分布 式并行计算,不依赖于任何专有硬件,达到的性能却远远超过传统高 昂的专有系统。 Big Date2.indd 2 16-11-22 下午3:38 Greenplum 精粹文集 3 大家都知道 Greenplum 的数据库引擎层是基于著名的开源数据库 Post
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum数据仓库UDW - UCloud中立云计算服务商

    UDW Copyright © 2012-2021 UCloud 优刻得 16/206 如上图所⽰客⼾端访问管理,提供了客⼾端下载和数据加载⼯具和⽂档的下载。 JDBC连接 连接 Linux操作系统 快速上⼿ Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 17/206 yum install postgresql-jdbc.noarch exit(0); } } } 快速上⼿ Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 20/206 ODBC⽅式连接 ⽅式连接 Linux操作系统:CentOS 6.5 64位 1. 安装 postgresql odbc驱动 # yum install postgresql-odbc.x86_64 -y 2. 编辑/etc/odbcinst Workbench/J、 Navicat等⼯具来访问udw。 1.1 psql客户端⽅式访问 客户端⽅式访问 下载psql客⼾端 yum install postgresql.x86_64 (64位系统) psql -h hostIP(或域名) –U username -d database -p port –W hostIP:udw master节点的ip或者域名 username: 数据库⽤⼾名
    0 码力 | 206 页 | 5.35 MB | 1 年前
    3
  • pdf文档 Greenplum 介绍

    Greenplum 全球排名第三,实时分 析领域全球排名并列第四。Greenplum 是两个领域中排名前十的产品中的唯一一款开源产品。 Greenplum 基于 MPP(大规模并行处理)架构构建,具有良好的弹性和线性扩展能力,并内置 并行存储、并行通讯、并行计算和优化技术。同时,Greenplum 还兼容 SQL 标准,具备强大、 高效、安全的 PB 级结构化、半结构化和非结构化数据存储、处理和实时分析能力,可部署于企 时还能够支持涵盖 OLTP 型业务的混合负载,从而帮助客户真正打通业务-数据-洞见-业务的闭环。 目前,Greenplum 已经为国内外各行各业客户所广泛使用,支撑着全球各大行业的核心生产系统, 其涉及领域涵盖金融、保险、证券、通信、航空、物流、零售、媒体、政府、医疗、制造、能源 等。其中,国际客户包括摩根斯坦利、摩根大通、美国国家税务局、美联储、三星、戴尔、福特、 爱立信等,国内 以在全量数据而不是抽样数据上进行分析,提高了精度。 ● 开放源代码且持续大力投入的平台: 2017 年 Pivotal 在 github 的开源贡献列表中全球排 名第四左右。 采用开源方案,不担心后门问题,不担心被锁定。开源还可以构建更好的 生态。 ● 采用敏捷软件开发方法开发的平台:Greenplum 采用敏捷方法开发,实现了快速迭代、持 续发布和质量内建。2017 年 Greenplum 发布了 10 个版本,以前发布一个版本需要
    0 码力 | 3 页 | 220.42 KB | 1 年前
    3
  • pdf文档 Greenplum 编译安装和调试

    Greenplum 目前官方支持 Redhat/Centos/SuSE/Ubuntu 等Linux系统。大量开发人员包括我自己 使用Mac系统,但是不在官方支持列表中。 1.1 在 Mac 系统上编译 首先需要关闭苹果操作系统的 SIP 特性,否则无法初始化集群。 1. 重启操作系统 2. 重启过程中按下 command+R 进入恢复模式 3. 从 Utilities 菜单选择 菜单选择 Terminal 4. 执行 csrutil disable 5. 重启操作系统 // 安装Greenplum管理脚本依赖的 Python 包 $ wget https://bootstrap.pypa.io/get-pip.py $ sudo python get-pip.py $ sudo pip install psutil lockfile paramiko setuptools --disable-gpcloud \ --disable-gpfdist --prefix=$HOME/gpdb.master $ make [-j4] $ make install 在苹果系统上初始化Greenplum单节点集群时,需要做些准备工作: ● 添加​export PGHOST=localhost​至​~/.bash_profile ● 将本机的​hostname​与​127
    0 码力 | 15 页 | 2.07 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 5: 新一代数据平台

    Pivotal 最近推出全球第一个开源、支持多云的高级分析数据平台——Pivotal Greenplum 5。本白皮书着眼介绍 Greenplum 5 的核心特征,及多年来围绕该平台发展出的生态系统。 摘要 Pivotal Greenplum 不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在多云环境(公 有云和私有云)中,也适用不同的本地配置。其大规模并行处理 Pivotal Network 分发的打包版本将具有相同的内核(只有个别微小差 别)。这是两年来致力于与 PostgreSQL 8.3.23 集成的成果,目的在于扩展和融入以 Greenplum 为中心的生态系统和社 区。为了更好地贴合 PostgreSQL 社区的模式,他们对代码库进行了重构,这样一来,便可以更轻松地从最新版本(未来 的 PostgreSQL 9.X 和 10)中纳入 PostgreSQL Pivotal Greenplum 或是开源的 Greenplum Database 中,这种不受限于基础架构的方法的大部分优势都 具有同样强大的作用。在 Greenplum Database 上部署分析系统时,用户还可获得一些额外的优势: • Greenplum Database 可消除平台 / 供应商制约。用户可通过不同供应商获得针对 Greenplum 的服务和支持。 • Greenplum
    0 码力 | 9 页 | 690.33 KB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    .......................................................................................... - 95 - 系统模式 ................................................................................................ ..................................................................................... - 269 - 安装操作系统 .................................................................................................. .................................................................................... - 271 - 支持的操作系统 ..................................................................................................
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Greenplum数据库架构分析及5.x新功能分享

    分布式数据库:线性扩展,支持上百物理节点 Ÿ 企业级数据库:全球大客户超过 1000+ 安装集群 Ÿ 百万行源代码,超过10年的全球研发投入 Ÿ 开源数据库(greenplum.org),良性生态系统 5 Pivotal Confidential–Inter nal Use Only 5 © Copyright 2013 Pivotal. All rights reserved. Greenplum 多级容错机制 无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存) Ÿ 支持高效更新和删除 Ÿ AO 主要为插入而优化 表‘SALES’ 11月 列存储 行存储 7月 一年前 二年前 外部表 Ÿ 历史数据和不常访问的数 据存储在 HDFS 或者其他 外部系统中 Ÿ 无缝查询所有数据 Ÿ Text, CSV, Binary, Avro, Parquet 格式 6月 5月 10月 9月 8月 用户自定义数据存储格式 14 Pivotal Confidential–Inter
    0 码力 | 44 页 | 8.35 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 最佳实践分享

    • 对于并发请求高、面向于复杂的灵活查询的系 统,建议每个Segment配置4个或以下Instance, 这样来保证每个Instance所需资源,保证系统 系统运行稳定性,例如,减少OOM发生的概率; • 对于以批处理、串行工作为主的系统,可以配 置到8个Instance,这样可以尽可能的发挥每个 CPU的处理性能。 Master query plan Client Segments M22 统计信息收集  对于系统表和用户表需要收集统计信息,GPDB的查询计划是cost base的,统计信息的准确性对查询 计划的优劣有很大影响;  对于字段数较多的表,可关闭gp_autostate_mode (on_no_stats=>none),仅对必要列执行Analyze, 只在结果中返回的列无需收集统计信息;  对于频繁创建表删表的系统,可关闭gp_autostate_mode(on_no_stats=> on_change – gp_autostats_on_change_threshold = 5000000(资料依据项目而定)  Truncate操作不会丢失字段级统计信息,在适当条件下可仅针对系统字段执行Analyze 垃圾空间回收 • GPDB采用MVCC机制,UPDATE 或 DELETE并非物理删除,而只是对无效记 录做标记; • Update/delete操作后,数
    0 码力 | 41 页 | 1.42 MB | 1 年前
    3
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    今天的数据库供应商 网络运算的发展速度已经超过了主流数据库 • 海量规模 • 高性价比 • 高效率 数据库管理系统(DBMS)的 规模/容量 11 需要采用一种新的方法 •“一切皆可商用”:商业即用型x86 服务器、存储设备、网络 •通过软件很容易将处理能力扩展到 1000s的内核/系统 Greenplum • “黑盒子” • “大铁箱” • 大磁盘 过去Google™ 曾经用来实现信息搜索功能的技术, 提高服务器使用率 • 降低总硬件成本 • 降低能量成本 • 可以预估的服务等级 • 确保关键任务的可靠性 • 最出色的性能 • 高度灵活性 • 逐步扩展计算能力 • 动态措施 • 数据访问: • 在一个系统中协调所有企业数据的位置 • 可以通过任何语言(SQL、M/R等)进行分析 14 强大并且不断扩展的合作伙伴网络 硬件供应商 商务智能工具 15 服务供应商 业内支持和认可 行业奖励 “可能会成为数据仓库和数据 库管理系统市场的突破力量” Gartner的Donald Feinberg 17 通过Greenplum超级数据处 理引擎增强竞争优势 Greenplum数据引擎:内容和方式 价值主张 – 性价比: 性能可达到传统方案(Oracle、Teradata)的 10到100倍, 而成本只是其一小部分 – 可伸缩性:从较低的万亿字节扩展到千万亿字节 – 开放式系统:在通用系统和开放源软件的基础上创建
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
共 22 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
完全兼容欧拉开源操作系统操作系统HTAP数据平台Greenplum精粹文集仓库数据仓库UDWUCloud中立计算服务服务商介绍编译安装调试Pivotal一代新一代Database管理管理员指南据库数据库架构分析功能分享最佳实践数据管理数据分析解决方案解决方案
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩