Greenplum资源管理器2017 年象行中国(杭州 站)第一期 Greenplum资源管理器 姚珂男/Pivotal kyao@pivotal.io 2017 年象行中国(杭州 站)第一期 Agenda • Greenplum数据库 • Resource Queue • Resource Group 2017 年象行中国(杭州 站)第一期 Greenplum数据库 • 基于PostgreSQL • 分布式 corruption => PANIC 2017 年象行中国(杭州 站)第一期 Resource Queue • Cost is tricky – 没有明确的定义 – 不同优化器不一致 – 优化器不能被纳入资源管理器 2017 年象行中国(杭州 站)第一期 Resource Queue • Priority is rough – 不能精确控制CPU – CHECK_FOR_INTERRUPTS – BackoffBackendTick 空闲group配额会被抢占 – 精确控制 2017 年象行中国(杭州 站)第一期 Resource Group • Memory – Not using CGroups – 重构resource queue内存管理 – 严格资源隔离 – statement_mem控制spill – 每个group内做redzone和runaway detection 2017 年象行中国(杭州 站)第一期 Resource0 码力 | 21 页 | 756.29 KB | 1 年前3
Greenplum Database 管理员指南 6.2.1Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 1 - Greenplum Database 管理员指南 版本 V6.2.1 2020 年 09 月 27 日 欢迎关注 Greenplum 官方微信公众号和加入官方社区技术讨论群: Greenplum 做各种补丁 脚本,也看到了 Greenplum 的大幅进步,甚至我们以前的小技巧也不再需要,持续的 进步,带来的是生态的蓬勃发展。 Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 2 - 序言 术语约定 GP : Greenplum 数据库 Master 陈淼 电邮: miaochen@mail.ustc.edu.cn Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 3 - 目录 Greenplum Database 管理员指南 ...................................................0 码力 | 416 页 | 6.08 MB | 1 年前3
Greenplum 新一代数据管理和数据分析解决方案1 新一代数据管理和数据分析 解决方案 关于Greenplum公司 • Greenplum是一家数据库软件公司,在数据处理和 BI/DW领域,提供容量 最大、速度最快、性价比最好的数据库引擎产品和服务。 • Greenplum总部位于圣马蒂奥,加利福尼亚州,美国,成立于2003年6月。 • Greenplum 中国于2008年12月正式成立. 2010/4/8 官方网站: www.greenplum 千万亿字节 万亿字节 千兆字节 行业商务智能解决方案的实例 政府 电信 金融服务 公民服务 国家安全 电子政务 法规实施和监管 人力资本管理 信息传播 合规性报告 资产组合分析 客户报表 电汇通知 分部记分卡 客户关系管理、收 购和盈利率 欺诈检测 欺诈分析 客户流失分析 响应时间 流量分析 产品关联/捆绑 零售 存储运营分析 客户忠诚度计划 协作规划和预估 1995 2000 2005 2010 新一代数据库的要求 传统数据库的要求 今天的数据库供应商 网络运算的发展速度已经超过了主流数据库 • 海量规模 • 高性价比 • 高效率 数据库管理系统(DBMS)的 规模/容量 11 需要采用一种新的方法 •“一切皆可商用”:商业即用型x86 服务器、存储设备、网络 •通过软件很容易将处理能力扩展到 1000s的内核/系统 Greenplum0 码力 | 45 页 | 2.07 MB | 1 年前3
Greenplum 精粹文集SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big Date2.indd 1 16-11-22 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum 正是在这一背景下产生的,借助于分 布式计算思想,Greenplum 实现了基于数据库的分布式数据存储和并 行计算(GoogleMapReduce 实现的是基于文件的分布式数据存储和 计算,我们会在后面比较这两种方法的优劣性)。 话说当年 Greenplum(当时还是一个 Startup 公司,创始人家门口有 一棵青梅 ——greenplum,因此而得名)召集了十几位业界大咖(据 Postgresql 数 据库实例同时开展并行计算。而且,这些 Postgresql 之间采用 share- nothing 无共享架构,从而更将这种并行计算能力发挥到极致,除此之 外,MPP 采用两阶段提交和全局事务管理机制来保证集群上分布式事 务的一致性,Greenplum 像 Postgresql 一样满足关系型数据库的包括 ACID 在内的所有特征。 从上图可以看到,Greenplum 的最小并行单元不是节点层级,而是在0 码力 | 64 页 | 2.73 MB | 1 年前3
深度揭秘Greenplum开源数据库透明加密支持上千个节点的部署 • 支持PB级文件 • 丰富的ETL和外部组件 • 支持Python/R/Java直接访问处理数据库数据 • https://github.com/greenplum-db/gpdb GPDB GPDB的数据安全 用户 • 连接数据库 • 运行业务 DBA • 管理数据库 • 业务审计 System Admin • 管理集群 • 数据备份恢复 运行模式 运行业务 DBA • 管理数据库 • 业务审计 System Admin • 管理集群 • 数据备份恢复 管理模式 GPDB的数据安全 用户 • 连接数据库 • 运行业务 DBA • 管理数据库 • 业务审计 System Admin • 管理集群 • 数据备份恢复 管理模式 GPDB的数据安全 System Admin • 管理集群 • 数据备份恢复 GPDB的数据安全 System Admin • 管理集群 • 数据备份恢复 需要登录到系统进行运维 • 可以访问数据库二进制文件 • 可以访问数据库数据文件 • 可以访问预写日志文件 潜在风险(二) GPDB的数据安全 System Admin • 管理集群 • 数据备份恢复 运维模式 • 原厂服务,主机厂或者第三方运维 数据文件为明文二进制文件 • 直接通过Linux自带工具(strings0 码力 | 48 页 | 10.19 MB | 1 年前3
Greenplum分布式事务和两阶段提交协议Write Ahead Logging + 存储管理 Jim Gray于1981年VLDB描述了事务的原子性、一致性和持久性,在此基础上,Haerder和Reuter在1983年中提出了事务的隔离性并提出术语 “ACID”,自此,事务的ACID四个性质成为业内标准术语 8 Disk-Oriented DBMS Components 数据库管理系统组成图 Hector Garcia-Molina Ullman/Jennifer Widom《数据库系统实现》 查询编译器/ 优化器 事务管理器 DDL编译器 执行引擎 日志和恢复 并发控制 索引/文件/ 记录管理器 缓冲区管理器 缓冲区 锁表 存储管理器 存储 查询计划 对索引、文件和 记录的请求 页命令 事务命令 查询、更新 用户/ 应用 DDL命令 数据库管理员 数据、元数据、索引 日志页 读、写页 元数据、 统计数据 元数据 No-Steal Steal: 允许Buffer Pool里未提交事务所修改的脏页刷回到持久存储 No-steal: 不允许Buffer Pool里未提交事务所修改的脏页刷到持久存储中 缓冲区管理策略Buffer Management Policy 13 ■ Force策略的问题 对持久存储器进行频繁的随机写操作,性能下降。 ■ No-Steal策略的问题 不允许未提交事务的脏页换出,系统的并发量不高。0 码力 | 42 页 | 2.12 MB | 1 年前3
Pivotal Greenplum 最佳实践分享shmmax = 1000000000 kernel.sem = 250 512000 100 2048 Redhat 6.2以后,内核增加了hugepage大页内存管理,关闭hugepage可以提高混合负载管理性能 设置办法:修改local脚本 For SUSE /etc/init.d/boot.local For RHLE /etc/rc.d/rc.local > $i;done echo never > /sys/kernel/mm/transparent_hugepage/enabled 一般不建议直接修改/boot/grub/grub.conf文件或者/boot/grub/menu.lst 常用数据库参数 参数名 Master节点值 Segment节点值 checkpoint_segments 32 32 max_connections 些参数 Vacuum Full/REORGANIZE:立即释放垃圾空间还给操作系统 Vacuum Full相当于碎片整理; Reorganize相当于重建表,数据表对应的文件名(pg_class -> relfilenode)将会发生改变。 Vacuum Full的处理性能非常低,一般情况下不建议采用,可以用Reorganize代替、或者使用AO表;0 码力 | 41 页 | 1.42 MB | 1 年前3
完全兼容欧拉开源操作系统的 HTAP 数据平台 GreenplumCPU 调度算法保障在线业务对 CPU 的实时抢占及抖 动抑制,创新业务优先级 00M 内存回收算法保障在线业务安全可靠运行。 • 新文件系统 EulerFS:面向非易失性内存的新文件系统,采用软更新、目录双视图等技术减少文件元数据同步 时间,提升文件读写性能。 • 内存分级扩展 etMem:新增用户态 swap 功能,策略配置淘汰的冷内存交换到用户态存储,用户无感知,性能 优于内核态 优于内核态 swap。 2. 夯实云化基座 容器操作系统 KubeOS:云原生场景,实现 OS 容器化部署、运维,提供与业务容器一致的基于 K8S 的管理体验。 • 安全容器方案:iSulad+shimv2+StratoVirt 安全容器方案,相比传统 docker+qemu 方案,底噪和启动时间 优化 40%。 • 双平面部署工具 eqqo:ARM/X86 双平面混合集群 SQL,可以让服务器群集能够以单一数据超级计算机的方式运行,且性能比传统数据库或其他同类平台高出数十甚 至数百倍。其多种分析扩展功能支持 ANSI SQL,并通过封装扩展提供多种内置语言和附加功能。Greenplum 能够 管理各种规模的数据容量,数据量从数 GB 到数 PB 不等。 Greenplum 环境适用性强与其开放性、真正开源、社区活跃有密不可分的关系,一方面 Greenplum 能够独立于专用 硬件0 码力 | 17 页 | 2.04 MB | 1 年前3
并行不悖- OLAP 在互联网公司的实践与思考Ø instance实例 - user - tablesapce Ø database - schema - table,view,function - data row Ø 物理文件 - oid - 表空间 - 数据文件命名 12 greenplum体系架构 greenplum的体系结构 13 greenplum体系架构 greenplum的体系结构 14 greenplum体系架构 greenplum的体系结构 • greenplum的架构特点 Ø MPP ShareNothing 海量并行处理+完全无共享 Ø cpu计算能力 Ø 数据从Disk上的I/O吞吐性能 Ø master管理节点 Ø segment数据节点 • greenplum的核心功能 Ø 无共享MPP Ø 多态存储 Ø 高效数据加载 (gpfdist+外部表,每小时4TB+) Ø 分布分区 Ø 数据压缩 Ø 外部访问 兆网 Ø 数据来源为OLTP库,针对小数据量传输和计算,部分实时交互操作 Ø 以对账业务为主,统计计算为辅 • 公司IDC_02机房Greenplum体系 Ø 针对数据来源主要是kfk产生csv文件的业务,不直接从数据库传数 Ø 以重点业务线、活动数据、非OLTP业务数据的任务计算为主 • 公司IDC_03机房Greenplum体系 Ø 数据来源来源为OTLP库库,针对大数据量传输和计算,采用T+1方式0 码力 | 43 页 | 9.66 MB | 1 年前3
Greenplum on Kubernetes
容器化MPP数据库云数据库增速巨大 ● DBasS的需求 ● 跨云的需求 云数据库实现方案 云数据库需求 ● DBasS ○ 自动化运维 ○ 自动化调优 ● 弹性资源管理 ○ 存储资源 ○ 计算资源 ● 安全 ○ 用户数据 ○ 临时文件 ○ 网络传输 ○ 权限控制 ● 跨云 ○ 公有云 ○ 私有云 云数据库实现方案 ● 全新数据库 ○ Snowflake ● 原有数据库架构升级 Vertica Eon Mode ● 容器化数据库+Kubernetes ○ Apache Spark ○ CockroachDB ○ Apache HAWQ 云数据库存储方案 ● 块存储 ○ 文件系统接口 ● 对象存储 ○ 成本低 ○ 扩展性强 ○ 访问延迟高 Greenplum on Kubernetes Network Interconnect Standby Host Master 容器化Greenplum部署策略 ○ Master部署策略 ○ Primary Segment部署策略 ○ Mirror Segment部署策略 ● 容器化Greenplum运维管理 ○ 故障检测及恢复 ○ 升级扩容 ● 容器化Greenplum存储管理 ○ 容器本地存储易失性 容器化Greenplum ● 容器粒度 ○ Segment主机 VS. Segment实例 ● 容器资源分配 ○ CPU0 码力 | 33 页 | 1.93 MB | 1 年前3
共 27 条
- 1
- 2
- 3













