积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(27)Greenplum(27)

语言

全部中文(简体)(27)

格式

全部PDF文档 PDF(27)
 
本次搜索耗时 0.034 秒,为您找到相关结果约 27 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    ..................................................................................... - 21 - 数据是如何存储的 ................................................................................................. ........................................................................... - 34 - 编辑 pg_hba.conf 文件 ....................................................................................... - 35 - 限制并发连接数量 ...................... - 85 - 创建文件空间 ............................................................................................................ - 86 - 转移临时文件或事务文件的位置 ..............................
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    Scale-up 模式遇到了瓶颈, SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum 正是在这一背景下产生的,借助于分 布式计算思想,Greenplum 实现了基于数据库的分布式数据存储和并 行计算(GoogleMapReduce 实现的是基于文件的分布式数据存储和 计算,我们会在后面比较这两种方法的优劣性)。 话说当年 Greenplum(当时还是一个 Startup 公司,创始人家门口有 一棵青梅 ——green PG 有非常强大 SQL 支持能力和非常丰富的统计函数和统计语法 支持,除对 ANSI SQL 完全支持外,还支持比如分析函数(SQL2003 OLAP window 函数),还可以用多种语言来写存储过程,对于 Madlib、R 的支持也很好。这一点上 MYSQL 就差的很远,很多分 析功能都不支持,而 Greenplum 作为 MPP 数据分析平台,这些功 能都是必不可少的。 2) Mysql
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum分布式事务和两阶段提交协议

    Phase Locking, 2PL)、乐观并发控制 (OCC) Durability 持久性 一个事务在提交之后,该事务对数据库的改变 是持久的。 Write Ahead Logging + 存储管理 Jim Gray于1981年VLDB描述了事务的原子性、一致性和持久性,在此基础上,Haerder和Reuter在1983年中提出了事务的隔离性并提出术语 “ACID”,自此,事务的ACID四个性质成为业内标准术语 日志和恢复 并发控制 索引/文件/ 记录管理器 缓冲区管理器 缓冲区 锁表 存储管理器 存储 查询计划 对索引、文件和 记录的请求 页命令 事务命令 查询、更新 用户/ 应用 DDL命令 数据库管理员 数据、元数据、索引 日志页 读、写页 元数据、 统计数据 元数据 9 存储介质的类型 ■ Volatile storage 易失性存储器 DRAM, Cache Non-volatile storage 非易失性存储器 Disk, SSD, NVM ■ Stable stage 稳定存储器 theoretically never cannot be guaranteed 图片来源: Power consumption estimation using in-memory database computation 10 不同存储介质的访问时间 图片来源:Systems
    0 码力 | 42 页 | 2.12 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 最佳实践分享

    > $i;done echo never > /sys/kernel/mm/transparent_hugepage/enabled 一般不建议直接修改/boot/grub/grub.conf文件或者/boot/grub/menu.lst 常用数据库参数 参数名 Master节点值 Segment节点值 checkpoint_segments 32 32 max_connections Update/delete操作后,数据库不会自动释放这些空间,这些垃圾空间的回收方 式: 1)Vacuum 2)Vacuum full 3)REORGANIZE • 不进行垃圾空间回收的影响 o 垃圾空间浪费存储空间 o 垃圾空间影响查询性能 注:delete all用truncate代替,truncate无需回收垃圾空间 垃圾空间回收  Vacuum:标记垃圾空间为可再利用 些参数  Vacuum Full/REORGANIZE:立即释放垃圾空间还给操作系统 Vacuum Full相当于碎片整理; Reorganize相当于重建表,数据表对应的文件名(pg_class -> relfilenode)将会发生改变。 Vacuum Full的处理性能非常低,一般情况下不建议采用,可以用Reorganize代替、或者使用AO表;
    0 码力 | 41 页 | 1.42 MB | 1 年前
    3
  • pdf文档 并行不悖- OLAP 在互联网公司的实践与思考

    Ø不同数据量,不同事务特点,不同查询需求 Ø历史数据归档与冷热分离 Ø实时与延时需求的权衡 6 数据仓库体系架构 数据流转过程 • 1 业务数据的产生 —— OLTP • 2 业务数据的中转 —— ETL服务器 • 3 数据的存储和计算 —— OLAP集群 • 4 结果数据的展现 —— 数据集市 • 5 访问接口的封装 —— API接口服务器 • 6 最终数据的显示 —— 前端界面 • 7 结果数据的交互 —— OLTP,趋势分析 数据库归档,只能load,不支持DML – 对特定OLAP类查询有很好的支持作用 • 通用性数据仓库 —— Greenplum – 独立的数据库仓库解决方案 – 可以很好支持各种方式的数据加载和DML操作 – 具备海量的数据存储和计算性能 9 Greenplum现状说明 三 Greenplum体系架构 二 数据仓库体系架构 一 Greenplum开发规范 五 Greenplum运维体系 四 Greenplum扩展规划 pg结构组成 Ø 连接关系系统 Ø 编译执行系统 Ø 存储执行系统 Ø 事务系统 Ø 系统表 • pg逻辑和物理结构 Ø instance实例 - user - tablesapce Ø database - schema - table,view,function - data row Ø 物理文件 - oid - 表空间 - 数据文件命名 12 greenplum体系架构 greenplum的体系结构
    0 码力 | 43 页 | 9.66 MB | 1 年前
    3
  • pdf文档 Greenplum 排序算法

    大小的顺串呢? 归并排序的三个问题 23 替换选择算法 24 Knuth 5.4.1R替换选择算法: ● 1. 初始化阶段,读取输入元组至内存,并建立最小堆。 ● 2. 弹出堆顶元组,输出到顺串文件的缓冲区,并记录该元组的排序键为 lastkey。 ● 3. 读取新元组,如果元组排序键大于等于lastkey,插入堆顶,并调整堆,使其有 序。 ● 4. 如果新元组排序键小于lastkey,将该元组放入堆尾,并将堆的大小减1。 替换选择算法 25 ● 问题二:合并阶段假设存在N个输入缓冲区,如何高效的比较N个输入缓冲区的 最小值,并输出到输出缓冲区? 归并排序的三个问题 26 ● 假设顺串(长度为L)分布在K个文件中,顺串合并时需要K个输入缓冲区和1个输 出缓冲区,每次选取K个缓冲区的最小值,输出到输出缓冲区。最后,输出缓冲 区输出的顺串长度为L*K ● 算法复杂度 O(K* (L*K)) 顺串合并 1 ● 1. 输入每个顺串的第一个记录作为败者树的叶子节点。建立初始化败者树。 ● 2. 两两相比较,父亲节点存储了两个节点比较的败者(节点较大的值);胜利者 (较小者)可以参与更高层的比赛。这样树的顶端就是当次比较的冠军(最小 者)。 ● 3. 调整败者树,当我们把最小者输入到输出文件以后,需要从相应的顺串取出 一个记录补上去。补回来的时候,我们就需要调整败者树,我们只需要沿着当前 节点的父亲
    0 码力 | 52 页 | 2.05 MB | 1 年前
    3
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    信息传播 合规性报告 资产组合分析 客户报表 电汇通知 分部记分卡 客户关系管理、收 购和盈利率 欺诈检测 欺诈分析 客户流失分析 响应时间 流量分析 产品关联/捆绑 零售 存储运营分析 客户忠诚度计划 协作规划和预估 预防亏损 优化供应链 当今的数据仓库方案 基于硬件 专有,昂贵 不可扩展 针对OLTP进行了优化 主流 10 数据库行业所面临的挑战 网络运算的发展速度已经超过了主流数据库 • 海量规模 • 高性价比 • 高效率 数据库管理系统(DBMS)的 规模/容量 11 需要采用一种新的方法 •“一切皆可商用”:商业即用型x86 服务器、存储设备、网络 •通过软件很容易将处理能力扩展到 1000s的内核/系统 Greenplum • “黑盒子” • “大铁箱” • 大磁盘 过去Google™ 曾经用来实现信息搜索功能的技术, 现在被Greenplum用于数据仓库 Greenplum愿景:企业数据集合 13 • 在企业内创建统一的数据运算平台 • 企业所有者可以直接控制其数据实例 • 通过实体整合提供企业级数据访问功能 • 灵活的扩展和配置降低了投资的平均风险 源文件 源数据 源数据 源文件 数据仓库和分析应 用程序 Greenplum数据架构 商用硬件集群 分析 数据 市场 企业数 据仓库 企业数据集合:主要的优势 • 实体整合 • 提高服务器使用率 • 降低总硬件成本
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
  • pdf文档 Greenplum on Kubernetes 容器化MPP数据库

    云数据库增速巨大 ● DBasS的需求 ● 跨云的需求 云数据库实现方案 云数据库需求 ● DBasS ○ 自动化运维 ○ 自动化调优 ● 弹性资源管理 ○ 存储资源 ○ 计算资源 ● 安全 ○ 用户数据 ○ 临时文件 ○ 网络传输 ○ 权限控制 ● 跨云 ○ 公有云 ○ 私有云 云数据库实现方案 ● 全新数据库 ○ Snowflake ● 原有数据库架构升级 ○ Vertica Eon Mode ● 容器化数据库+Kubernetes ○ Apache Spark ○ CockroachDB ○ Apache HAWQ 云数据库存储方案 ● 块存储 ○ 文件系统接口 ● 对象存储 ○ 成本低 ○ 扩展性强 ○ 访问延迟高 Greenplum on Kubernetes Network Interconnect Standby Host Master Primary Segment部署策略 ○ Mirror Segment部署策略 ● 容器化Greenplum运维管理 ○ 故障检测及恢复 ○ 升级扩容 ● 容器化Greenplum存储管理 ○ 容器本地存储易失性 容器化Greenplum ● 容器粒度 ○ Segment主机 VS. Segment实例 ● 容器资源分配 ○ CPU ○ 内存 ○ 磁盘 ● 容器间网络互联
    0 码力 | 33 页 | 1.93 MB | 1 年前
    3
  • pdf文档 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum

    操作系统支持多设备,应用一次开发覆盖全场景。 openEuler 平台架构 openEuler 是覆盖全场景的创新平台,在引领内核创新,夯实云化基座的基础上,面向计算架构互联总线、存储介质 发展新趋势,创新分布式、实时加速引擎和基础服务,结合边缘、嵌入式领域竞争力探索,打造全场景协同的面向数字 基础设施的开源操作系统。 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum 动抑制,创新业务优先级 00M 内存回收算法保障在线业务安全可靠运行。 • 新文件系统 EulerFS:面向非易失性内存的新文件系统,采用软更新、目录双视图等技术减少文件元数据同步 时间,提升文件读写性能。 • 内存分级扩展 etMem:新增用户态 swap 功能,策略配置淘汰的冷内存交换到用户态存储,用户无感知,性能 优于内核态 swap。 2. 夯实云化基座 容器操作系统 Docker 容器交互,以在容器中执行用户定义函数 (UDF),这样方便数据科学家可以在不需要 DBA 帮助的情况自由使用数据分析,同时大大提高了安全性,Docker 容器确保用户代码无法访问源主机的文件系统。此外,容器启动时网络访问受限,无法连接回 Greenplum 数据库或 打开任何其他外部连接。 集成分析:改进后的全新分析接口 一直以来,客户都能在 Greenplum 中做高
    0 码力 | 17 页 | 2.04 MB | 1 年前
    3
  • pdf文档 Greenplum数据库架构分析及5.x新功能分享

    2013 Pivotal. All rights reserved. Greenplum 简介 4 Pivotal Confidential–Inter nal Use Only GPDB:为大数据存储、计算、挖掘而设计 Ÿ 标准 SQL 数据库:ANSI SQL 2008 标准,OLAP,JDBC/ODBC Ÿ 支持ACID、分布式事务 Ÿ 分布式数据库:线性扩展,支持上百物理节点 Ÿ 企业级数据库:全球大客户超过 无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存) 多种压缩,多级分区表 Segment 2D Segment 3A Segment 3B Segment 3C Segment 3D 10 Pivotal Confidential–Inter nal Use Only 多级分区存储 • 哈希Distribution:数据均 匀的分布到各个数据节点 • 范围分区: 数据节点内部, 根据多种规则分区,降低扫 描量 数据集 Segment 1A Segment 1C Segment
    0 码力 | 44 页 | 8.35 MB | 1 年前
    3
共 27 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
GreenplumDatabase管理管理员指南精粹文集分布布式分布式事务阶段提交协议Pivotal最佳实践分享并行并行不悖OLAP互联联网互联网公司思考排序算法一代新一代数据数据管理分析数据分析解决方案解决方案onKubernetes容器MPP据库数据库完全兼容欧拉开源操作系统操作系统HTAP平台架构功能
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩