积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(14)Greenplum(14)

语言

全部中文(简体)(14)

格式

全部PDF文档 PDF(14)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 14 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    1 新一代数据管理和数据分析 解决方案 关于Greenplum公司 • Greenplum是一家数据库软件公司,在数据处理和 BI/DW领域,提供容量 最大、速度最快、性价比最好的数据库引擎产品和服务。 • Greenplum总部位于圣马蒂奥,加利福尼亚州,美国,成立于2003年6月。 • Greenplum 中国于2008年12月正式成立. 2010/4/8 官方网站: www.greenplum greenplum.com www.greenplum-china.com Greenplum:简介 Greenplum数据引擎软件为新一代数 据仓库所需的大规模数据和复杂查询功 能所设计 3 推动数据依赖型企业的发展 全球各地的一些Greenplum客户 4 亚太地区 欧洲、中东、非洲 北美 中国的客户 5 金融 交通 互联网 其它 Teradata Netezza Oracle 2008年亚洲南 部地区成就奖 “可能会成为数据仓库和数据 库管理系统市场的突破力量” Gartner的Donald Feinberg 17 通过Greenplum超级数据处 理引擎增强竞争优势 Greenplum数据引擎:内容和方式 价值主张 – 性价比: 性能可达到传统方案(Oracle、Teradata)的 10到100倍, 而成本只是其一小部分 – 可伸缩性:从较低的万亿字节扩展到千万亿字节
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big Date2.indd 1 16-11-22 下午3:38 2 由此,业界认识到对于海量数据需要一种新的计算模式来支持,这种 模式就是可以支持 Scale-out 式并行计算,不依赖于任何专有硬件,达到的性能却远远超过传统高 昂的专有系统。 Big Date2.indd 2 16-11-22 下午3:38 Greenplum 精粹文集 3 大家都知道 Greenplum 的数据库引擎层是基于著名的开源数据库 Postgresql的(下面会分析为什么采用Postgresql,而不是mysql等等), 但是 Postgresql 是单实例数据库,怎么能在多个 X86 服务器上运行多 所谓术业有专攻,就像制造跑车的不会亲自生产车轮一样,我们只 要专注在分布式技术中最核心的并行处理技术上面,协调我们下面 的轮子跑的更快更稳才是我们的最终目标。而数据库底层组件就像 车轮一样,经过几十年磨砺,数据库引擎技术已经非常成熟,大可 不必去重新设计开发,而且把数据库底层交给其它专业化组织来开 发(对应到 Postgresql 就是社区),还可充分利用到社区的源源不 断的创新能力和资源,让产品保持持续旺盛的生命力。
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum数据库架构分析及5.x新功能分享

    客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存) 多种压缩,多级分区表 索引(B树,位图,GiST) 安全性 语言支持 Only 大规模并行数据加载 • 高速数据导入和导出 – 主节点不是瓶颈 – 10+ TB/小时/Rack – 线性扩展 • 低延迟 – 加载后立刻可用 – 不需要中间存储 – 不需要额外数据处理 • 导入/导出 到&从: – 文件系统 – 任意 ETL 产品 – Hadoop 发行版 外部数据源 Interconnect ... ... ... ... 主节点 查询优化和调度
    0 码力 | 44 页 | 8.35 MB | 1 年前
    3
  • pdf文档 Greenplum 介绍

    Greenplum 介绍 Greenplum 是全球领先的开源大数据平台,是能够提供包含实时处理、弹性扩容、混合负载、云 原生和集成数据分析等强大功能的大数据引擎。 著名分析机构 Gartner 2019 年报告中,在经典数据分析领域 Greenplum 全球排名第三,实时分 析领域全球排名并列第四。Greenplum 是两个领域中排名前十的产品中的唯一一款开源产品。 ik、Tableau、Anaconda、 Microstrategy、Boundless、Zattset、Datometry 等,涵盖 ETL、商业智能、高级分析、可视化、 集成分析、GIS 数据处理、迁移、安全和管理等各个领域。 更多信息请访问 greenplum.cn。
    0 码力 | 3 页 | 220.42 KB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    系统中各个 Instance 上,每个 Instance 存储着一部分数据 (对于复制表来说,每个 Instance 存储一份完整的数据,这是 6 版本新引入的分布策 略),Instance 才是真正进行数据处理的地方。缺省情况下,用户不能跳过 Master 直接访问 Instance,而只能通过 Master 来访问整个数据库系统,不过,对于管理 员来说,有时需要使用 Utility 模式来访问 Instance,访问方法是: 子分区的情况,在业务实现中,还可以先创建一个临时的表、插入数据、然后与相应的 分区表进行分区交换,假如分区表上有索引,直接插入数据的性能会受到影响,这种分 区交换的方式,可以在数据准备结束之后再创建索引,整个数据处理过程对分区表没有 任何影响,总体性能高于直接的COPY和INSERT。参考相关的"交换分区"章节。 验证分区策略 表分区的目的是减少查询的数据扫描量。若一张表基于相应的查询条件做分区,可 SQL修辞  SQL值表达式 SQL 修辞 SQL(结构化查询语言)是用来访问数据库的一种语言。SQL语言有特定的修辞和词 法(单词、特征等),据此构造数据库引擎可以理解的查询或命令。 SQL由一系列的命令组成。命令由一系列按照语法规范编写的修辞组成,以分号(;) 结尾。 GP基于PostgreSQL,并遵循相同的SQL结构和语法(一些MPP相关的有差异)。大
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 并行不悖- OLAP 在互联网公司的实践与思考

    1方式 Ø 以核心业务的数据计算、统计为主 18 Greenplum现状说明 数据架构示意图 19 Greenplum现状说明 三大Greenplum集群关系 • 数据来源不同 • 数据处理不同 • 时效速度不同 • 体系架构相同 • 年表划分相同 • 平台整体定位 • 定位不同,多集群配合形成逻辑大集群 20 Greenplum现状说明 Greenplum多层业务规划图
    0 码力 | 43 页 | 9.66 MB | 1 年前
    3
  • pdf文档 Greenplum 分布式数据库内核揭秘

    Confidential │ ©2021 VMware, Inc. 16 当我们插入数据时,Coordinator 将会根据分布键以及分布策略将数据分布到不同的节点中去。那 么在查询时,就需要各个节点将数据处理完毕后发送至 Coordinator 节点并返回给客户端用户。 分布式查询优化器 l 对于普通查询,只需要将 Segment 上的数据汇总即可,如果有 filter, 则在 segment 上执行条件过滤
    0 码力 | 31 页 | 3.95 MB | 1 年前
    3
  • pdf文档 Greenplum 排序算法

    ● 问题一:分割阶段只需要顺序扫描一次外存,最简单的策略是读取外存数据,加 载到内存,当内存用满时,执行快速排序等内排序算法,生成一个顺串。之后清 空内存,继续读取外存数据,如此反复,直到所有外存数据处理完毕。该算法生 成的每一个顺串的大小都不会超过内存的大小,而顺串越小,合并阶段的代价 就越高,需要读取外存的次数也越多,有没有办法在分割阶段就生成大于内存 大小的顺串呢? 归并排序的三个问题 23
    0 码力 | 52 页 | 2.05 MB | 1 年前
    3
  • pdf文档 Greenplum介绍

    ment返回的 数据,最后返回给用户。 Greenplum架构: Segment介绍 Segment是数据的实际存储的地方,也是一个经过改造 过的PostgreSQL数据库。它做实际的数据处理工作。 Greenplum建议在Segment host上建多个Segment数 据库,数量等于实际的CPU的core数。 Greenplum架构: 内部网络 Segment host与m
    0 码力 | 38 页 | 655.38 KB | 1 年前
    3
  • pdf文档 Greenplum数据仓库UDW - UCloud中立云计算服务商

    是⼀个开源的 Apache 的孵化项⽬. 它是⼀款基本 web 的 notebook ⼯具,⽀持交互式数据分析。通过插件的⽅式接⼊各种解释器(interpreter),使得⽤⼾能够以特定的语⾔ 或数据处理后端来完成交互式查询,并快速实现数据可视化。 部署 部署 Zeppelin 1) 安装 Java Zeppelin ⽀持的操作系统如下图所⽰。在安装 Zeppelin 之前,你需要在部署的服务器上安装
    0 码力 | 206 页 | 5.35 MB | 1 年前
    3
共 14 条
  • 1
  • 2
前往
页
相关搜索词
Greenplum一代新一代数据管理数据管理分析数据分析解决方案解决方案精粹文集据库数据库架构功能分享介绍Database管理员指南并行并行不悖OLAP互联联网互联网公司实践思考分布布式分布式内核揭秘排序算法仓库数据仓库UDWUCloud中立计算服务服务商
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩