完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum............................................................................................. 12 集成分析:改进后的全新分析接口 ..................................................................................... 也是一个技术孵化器。通过每半年发布一次的创新版,快速集成 openEuler 以及其他社区的最新技术成 果,将社区验证成熟的特性逐步回合到发行版中。这些新特性以单个开源项目的方式存在于社区,方便开发者获得源代 码,也方便其他开源社区使用。 社区中的最新技术成果持续合入发行版,发行版通过用户反馈反哺技术,激发社区创新活力,从而不断孵化新技术。 发行版平台和技术孵化器互相促进、互相推动、牵引版本持续演进。 6 openEuler 覆盖全场景的创新平台 openEuler 已支持 X86、Arm、RISC-V 多处理器架构,未来还会扩展 PowerPC、SW64 等更多芯片架构支持,持续 完善多样化算力生态体验。 openEuler 社区面向场景化的 SIG 不断组建,推动 openEuler 应用边界从最初的服务器场景,逐步拓展到云计算、边 缘计算、嵌入式等更多场景。openEuler0 码力 | 17 页 | 2.04 MB | 1 年前3
Greenplum 介绍Greenplum 介绍 Greenplum 是全球领先的开源大数据平台,是能够提供包含实时处理、弹性扩容、混合负载、云 原生和集成数据分析等强大功能的大数据引擎。 著名分析机构 Gartner 2019 年报告中,在经典数据分析领域 Greenplum 全球排名第三,实时分 析领域全球排名并列第四。Greenplum 是两个领域中排名前十的产品中的唯一一款开源产品。 等行业标准。经过半个多世纪的发展, SQL 成为了数据平台的万向头,向上可以连接各种 BI 工具、可视化工具和数据分析工具, 向下可以连接各种 ETL 工具、各种数据源和各种格式的数据等。 ● 集成数据分析平台:支持商业智能(BI)、文本、GIS、图、图像等。流式支持也在开发 中。通过 Pivotal 开源的 Apache 顶级项目 MADlib,Greenplum 可以在数据内部运行 50 接口进行数据分析,大大降低了数据分 析的门槛;MADlib 内建于数据库内,使用 MPP 的优势,提高了分析的效率;MADlib 可 以在全量数据而不是抽样数据上进行分析,提高了精度。 ● 开放源代码且持续大力投入的平台: 2017 年 Pivotal 在 github 的开源贡献列表中全球排 名第四左右。 采用开源方案,不担心后门问题,不担心被锁定。开源还可以构建更好的 生态。 ● 采用敏捷0 码力 | 3 页 | 220.42 KB | 1 年前3
Pivotal HVR meetup 20190816降低风险 5 Geographical Distribution Real-Time Analytics Data Lake Data Warehouse Cloud HVR 连续数据集成技术 Migrations Disaster Recovery 6 扩展性—高性能架构 7 • 创建并装载目标表 • 用于实时复制的初始化 • 也可以单独使用 • 可以被定义为任务,定时调度执行 基于数据库事务日志的变化数据捕获 9 • 避免人为错误 • 在迁移结束前校验数据 • 支持异构 异构平台间数据校验域修复 10 内置监控与报警 • 实时监控HVR进程 • 自动告警 • 与第三方企业监控平台集成 • 丰富的统计报表 LDAP authenticated user; if that’s not configured just OS username Next and 天天拍车是国内领先的二手车竞拍平台,现有核心业务是二手车线上 竞拍。同时,天天拍车还提供上门检测、线上竞拍、包办手续等一站 式二手车交易服务。 天天拍车运用互联网技术,从根本上解决了二手车跨各区域成交和流 通效率低下等问题,持续推进行业升级变革。全国二手车经销商传统 的线下收车方式正在被快速颠覆——二手车经销商通过天天拍车的在 线竞拍系统,在手机端就能轻松竞拍到全国海量优质车源,收车效率 和运营效率得以提升,这有助于二手车经销商专注于车辆整备和二手0 码力 | 31 页 | 2.19 MB | 1 年前3
Pivotal Greenplum 5: 新一代数据平台............................................................................................... 4 集成分析:改进后的全新分析接口 ..................................................................................... greenplum.org 网站下载和编译的版本以及通过 Pivotal Network 分发的打包版本将具有相同的内核(只有个别微小差 别)。这是两年来致力于与 PostgreSQL 8.3.23 集成的成果,目的在于扩展和融入以 Greenplum 为中心的生态系统和社 区。为了更好地贴合 PostgreSQL 社区的模式,他们对代码库进行了重构,这样一来,便可以更轻松地从最新版本(未来 的 PostgreSQL pivotal.io/cn 白皮书 6 © Copyright 2017 Pivotal Software, Inc.保留所有权利。 PIVOTAL GREENPLUM 5:新一代数据平台 集成分析:改进后的全新分析接口 一直以来,客户都能在 Pivotal Greenplum 中做高级分析,无论是提供将应用逻辑向下推送至数据所在位置的方法,执行 分析功能,还是以大规模并行方式构建数据模型,都可以实现。Greenplum0 码力 | 9 页 | 690.33 KB | 1 年前3
Greenplum机器学习⼯具集和案例• 强大的灵活性、可扩展:PL/X、Extension、PXF、外部表机制 • 完善的标准支持:SQL、JDBC、ODBC • 集成数据平台:BI/DW、文本、GIS、图、图像、机器学习 • 开放源代码,持续大力投入 • 敏捷方法学:快速迭代、持续发布、质量内建 • 企业级稳定性,成熟生态系统 2017.thegiac.com Greenplum: 机器学习工具集0 码力 | 58 页 | 1.97 MB | 1 年前3
Greenplum 精粹文集车轮一样,经过几十年磨砺,数据库引擎技术已经非常成熟,大可 不必去重新设计开发,而且把数据库底层交给其它专业化组织来开 发(对应到 Postgresql 就是社区),还可充分利用到社区的源源不 断的创新能力和资源,让产品保持持续旺盛的生命力。 这也是我们在用户选型时,通常建议用户考察一下底层的技术支撑 是不是有好的组织和社区支持的原因,如果缺乏这方面的有力支持 或独自闭门造轮,那就有理由为那个车的前途感到担忧,一个简单 99% 都 可 以 在 Greenplum 上 使 用, 例 如 odbc、jdbc、oledb、perldbi、python psycopg2 等,所以 Greenplum 与第三方工具、BI 报表集成的时候非 常容易;对于 postgresql 的 contrib 中的一些常用模块 Greenplum 提 供了编译后的模块开箱即用,如:oraface、postgis、pgcrypt 等, 对于其它模块,用户可以自行将 对于其它模块,用户可以自行将 contrib 下的代码与 Greenplum 的 include 头文件编译后,将动态 so 库文件部署到所有节点就可进行测 试使用了。有些模块还是非常好用的,例如:oraface,基本上集成了 Oracle 常用的函数到 Greenplum 中,曾经在一次 PoC 测试中,用户 提供的 22 条 Oracle SQL 语句,不做任何改动就能运行在 Greenplum 上。0 码力 | 64 页 | 2.73 MB | 1 年前3
Greenplum Database 管理员指南 6.2.1Greenplum 的 成长,见证了 Greenplum 从闭源到开源的成长历程,一路给 Greenplum 做各种补丁 脚本,也看到了 Greenplum 的大幅进步,甚至我们以前的小技巧也不再需要,持续的 进步,带来的是生态的蓬勃发展。 Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 2 - PostgreSQL 的版本合并等,从而,可以为国内商业用户提供更专业和更优质的本地 化服务,用户遇到问题,反馈给专业技术支持人员,或者专业售后服务团队,他们会同 用户一起排查和解决问题,如果有需要,还会保持与研发的持续沟通,虽然以前也是这 种工作模式,但由于时区和语言文化等诸多差异,沟通链路较长,时间较久,研发的本 地化,使得沟通的效率大大提高。 GP 是一个纯软件实现的 MPP 数据库产品,采用 Share-Nothing Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 70 - 例如,管理员想要创建3个资源队列:adhoc用于做持续查询的业务分析, reporting用于做定期的报表工作,executive用于高级用户查询。管理员希望确保 定期报表工作不受到adhoc分析查询不可预测的资源消耗的影响,希望高级用户提交的 查询能0 码力 | 416 页 | 6.08 MB | 1 年前3
Greenplum 6: 混合负载的理想数据平台well-showcased 12 Pivotal Confidential–Internal Use Only 卓越的OLAP特性 列式存储 分区、压缩 高级特性 递归查询、窗口函数 集成分析 多格式、多语言 Madlib: 机器学习 数据库内并行模型训练和预测、分类 ORCA 复杂查询优化器 成熟稳定 完备生态、支撑核心生产系统 13 Pivotal Confidential–Internal 50亿条链接 (1K) (10K) (100K) (1M) (10M) (100M) Note: log-log scale (100s) (1s) (10K s) (1M s) 数据库内集成分析 GRAPHS Confidential & Proprietary “请找出这样的员工,在Pivotal工作,互相直接 认识, 有一个人名字听起来像是 ‘Peter’ 或者 ‘Pavan’0 码力 | 52 页 | 4.48 MB | 1 年前3
并行不悖- OLAP 在互联网公司的实践与思考• 过去的数据 —— OLAP Ø非实时(T+1,或小时级),离线系统,分析决策 Ø事务大,频率相对小,并发低 • 未来的数据 —— 趋势分析 Ø非实时,离线+在线流系统,趋势分析 Ø算法分析,持续计算 5 数据仓库体系架构 OLAP场景举例 • 业务相关场景 Ø用户状态 (注册数,活跃数,并发量,峰值) Ø金币状态 Ø道具/物品状态 Ø对账状态 Ø活动反馈 • 架构相关场景 Ø不同数据量,不同事务特点,不同查询需求0 码力 | 43 页 | 9.66 MB | 1 年前3
Greenplum数据库架构分析及5.x新功能分享一个数据节点可以配置多个节点实例(Segment Instances) • 节点实例并行处理查询(SQL) • 数据节点有自己的CPU、磁盘和 内存(Share nothing) • 高速Interconnect处理持续 数据流(Pipelining) Interconnect Segment Host Segment Instance Segment Instance Segment Instance Segment0 码力 | 44 页 | 8.35 MB | 1 年前3
共 13 条
- 1
- 2













