Greenplum机器学习⼯具集和案例thegiac.com www.top100summit.com Greenplum机器器学习⼯工具集和案例例 姚延栋 Pivotal 研发技术总监 2017.thegiac.com • Greenplum ⼤大数据平台 • Greenplum 机器器学习⼯工具 • Greenplum 机器器学习案例例 ⼤大纲 2017.thegiac.com Greenplum: Greenplum: 机器学习工具集 2017.thegiac.com • PL/X:各种语言实现自定义函数(存储过程) • MADLib: 数据挖掘、统计分析、图(Graph)等算法 • GPText:文本检索和分析 • GeoSpatial:地理信息数据分析 • Image: 图像数据分析 Greenplum 机器器学习⼯工具集 2017.thegiac.com 2017.thegiac.com 客户端 数据库服务器器 Master Segment 1 Segment 2 Segment n … SQL 存储过程 结果集 String 聚集 psql … 执⾏行行流程 2017.thegiac.com External Sources Load, streaming, etc.0 码力 | 58 页 | 1.97 MB | 1 年前3
Greenplum 6新特性:
在线扩容工具GPexpand剖析Greenplum 6新特性: 在线扩容工具GPexpand剖析 杜佳伦 (jdu@pivotal.io) 大纲 • Greenplum 集群部署 • GPExpand简介与具体用法 • Greenplum 6中GPExpand的改进与实现 Greenplum 集群部署 Greenplum 集群部署 • gp_segment_configuration 字段名 描述 dbid distclass 分布列的操作类 GPExpand简介与具体用法 • GPExpand是Greenplum的扩容工具,可以为集群增加新的节 点来支持更大容量的存储和更高的计算能力。 • 随着Greenplum一起安装发布,在$GPHOME/bin下面,和其 他辅助工具,如gpstart,gpstop,gpactivatestandby一样,是一个 用python写的命令行脚本。 GPExpand简介与具体用法0 码力 | 37 页 | 1.12 MB | 1 年前3
完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum......................................................................................... 8 完善的生态工具链 ................................................................................................. 的管理体验。 • 安全容器方案:iSulad+shimv2+StratoVirt 安全容器方案,相比传统 docker+qemu 方案,底噪和启动时间 优化 40%。 • 双平面部署工具 eqqo:ARM/X86 双平面混合集群 0S 高效一键式安装,百节点部署时间<15min。 3. 探索场景创新 边缘计算:发布面向边缘计算场景的版本 openEuler21.09Edae 4. 繁荣社区生态 友好卓面环境:UKUDDEXfce 卓面环境,丰富社区卓面环境生态。 • 欧拉 DevKit:支持操作系统迁移、兼容性评估、简化安全配置 secPaver 等更多开发工具。 Greenplum:新一代 HTAP 数据平台 Greenplum 自 2006 年发布第一个版本以来,就以精巧架构、简单易用、运行稳定、优异性能、环境适应性强在 MPP 数据库领域独占鳌头,基于0 码力 | 17 页 | 2.04 MB | 1 年前3
Greenplum 精粹文集,借助高速网络(当 时是千兆以太网)组建的 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce 计算框架还是 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum 正是在这一背景下产生的,借助于分 基 本 上 99% 都 可 以 在 Greenplum 上 使 用, 例 如 odbc、jdbc、oledb、perldbi、python psycopg2 等,所以 Greenplum 与第三方工具、BI 报表集成的时候非 常容易;对于 postgresql 的 contrib 中的一些常用模块 Greenplum 提 供了编译后的模块开箱即用,如:oraface、postgis、pgcrypt 查询计划执行是并行的、索 引的建立和使用是并行的, 统计信息收集是并行的、表 关联(包括其中的重分布或 广播及关联计算)是并行的,排序和分组聚合都是并行的,备份恢复 也是并行的,甚而数据库启停和元数据检查等维护工具也按照并行方 式来设计。得益于这种无所不在的并行,Greenplum 在数据加载和数 据计算中表现出强悍的性能,某行业客户对此深有体会 : 同样 2TB 左 右的数据,在 Greenplum 中不到一个小时就加载完成了,而在用户传0 码力 | 64 页 | 2.73 MB | 1 年前3
Greenplum Database 管理员指南 6.2.1本文档的版权归[陈淼]个人所有,未经许可和授权不得抄袭和引用。 本文档中的绝大部分内容都经过编者重新考量和实测验证,有些观点与官方手册有 出入,仅代表编者本人观点,与官方手册无关。本书中可能会提及一些非官方的命令和 工具等,仅用于讲解相关知识,如有缺失相关细节的情况,请谅解。 致读者 如果您在阅读和参考本书的过程中发现有任何不妥之处,或者有任何的建议和意见, 欢迎联系编者,本书主要针对 GP 数 ... - 44 - Greenplum Database 管理员指南 V6.2.1 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 4 - 第三方客户端工具 .................................................................................................. ....................................................................................... - 410 - 命令工具与 admin_group 的 CONCURRENCY 属性 ......................................... - 410 - 资源队列管理内存等资源 .....0 码力 | 416 页 | 6.08 MB | 1 年前3
Greenplum介绍所有的用户连接都是直接连接到master服务器上的。 Greenplum数据库是基于PostgreSQL数据库的,所以 可以用PostgreSQL数据库的工具来连接Greenplum数 据库,如java程序可以使用PostgreSQL的jdbc驱动来 访问Greenplum数据库,也可以使用psql工具或 pgadminII来管理Greenplum。 Greenplum架构: Master介绍 Greenplum的Master数据库也是一个被改造过的 Greenplum4.0版本增加了功能,当备份节点坏的时 候,主节点可以把增量数据记下来,这样当备份节点的 主机恢复时,只需要恢复增量数据就可以了。 要让原先已offline的节点再加入集群中,需要重启集 群。 Greenplum中的高可用方案 对于Greenplum 3.X的版本,segment 的primary与 mirror之间是做的逻辑同步,mirror端的数据库实际上 也是可以读写的。而Greenplum4 GP的查询处理 用户提交一个SQL到master,master解析这个SQL, 生成一个分布式的执行计划,然后把这个分布式的执行 计划分发到各个segment上,然后segment执行它自己 的特定数据集的本地数据库业务。 所有的数据库操作,如表扫描、表连接(joins)、聚集 ( aggregations),排序,这些操作都会在所有的 segment上并行执行。每个segment执行这些操作时都0 码力 | 38 页 | 655.38 KB | 1 年前3
Greenplum 新一代数据管理和数据分析解决方案逐步扩展计算能力 • 动态措施 • 数据访问: • 在一个系统中协调所有企业数据的位置 • 可以通过任何语言(SQL、M/R等)进行分析 14 强大并且不断扩展的合作伙伴网络 硬件供应商 商务智能工具 15 服务供应商 业内支持和认可 行业奖励 “ Greenplum能够让企业在两 个方面同时达到最满意的效果: 供程序员使用的MapReduce以 及供数据库管理使用的 SQL。” Monash MapReduce Greenplum MapReduce的优势 • 处理在任何地点存储的任何类型的数 据 • 将SQL的普遍性与MapReduce的灵 活编程模式结合起来 • 针对业务关键分析功能提供企业级集 成、支持和发布 • 为新一代分析处理技术开启了大门– 其中包括文本分析、图形分析、数据 挖掘、机器学习以及更多内容 客户实例:福克斯互动媒体 (Fox Interactive Media) • 竞争对手 • Teradata, Oracle • 数据规模 • 1万亿行事实数据表,每天增加 3TB • 硬件 • 40节点的Sun数据仓库设备 • 优势 • 可以通过控制支持快速膨胀的数据集 “Greenplum将成为我们不可或缺的合作伙伴,因为我们需要不断更新数据操作方式,使用户和广告商 通过我们的工作网络中获得更好的印象。” - FIM受众网络技术和运营部门的产品执行副总裁 Arnie0 码力 | 45 页 | 2.07 MB | 1 年前3
Greenplum数据库架构分析及5.x新功能分享All rights reserved. Greenplum 架构 6 Pivotal Confidential–Inter nal Use Only 平台概况 产品特性 客户端访问和工具 多级容错机制 无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 语言支持 标准SQL支持,SQL 2003 OLAP扩展 支持 MapReduce 扩展编程语言 (Python,R, Java, Perl, C/C++) 第三方工具 BI 工具, ETL 工具 文本分析,数据挖掘等 管理工具 GP Command Center GP Workload Manager 7 Pivotal Confidential–Inter nal Use Only Confidential–Inter nal Use Only 多级分区存储 • 哈希Distribution:数据均 匀的分布到各个数据节点 • 范围分区: 数据节点内部, 根据多种规则分区,降低扫 描量 数据集 Segment 1A Segment 1C Segment 1D Segment 2A Segment 2B Segment 2C Segment 2D Segment 3A Segment 3B0 码力 | 44 页 | 8.35 MB | 1 年前3
深度揭秘Greenplum开源数据库透明加密潜在风险(二) GPDB的数据安全 System Admin • 管理集群 • 数据备份恢复 运维模式 • 原厂服务,主机厂或者第三方运维 数据文件为明文二进制文件 • 直接通过Linux自带工具(strings, hexdump)访问 • pg_waldump可以直接读取并显示预写日志 潜在风险(三) GPDB的数据安全 数据需要加密 • 机密数据 • 知识产权保护 • 审计要求 calculating key Data (Encrypted) Data (decrypted) pgcypto pgcypto的问题 改变原有查询逻辑 • 不兼容现有查询语句 • 不兼容ETL工具 性能低 • 不支持索引 • 优化器无法使用,需要全表扫描 局限性高 • 多表关联查询需要先全表解密 • 只能加密表数据 pgcypto的问题 一款开源的HTAP数据库: • MPP架构 GPDB透明加密 加密目标 • 表数据 • 预写日志数据 • 主从节点所有数据 • 索引及其他表辅助数据 • 磁盘缓存文件 设计目标 • 对用户和数据库透明 • 高性能,使用CPU加密指令集 • 内核原生 GPDB透明加密 加密 Planer TDE key Data (plain) Data (Encrypted) Executeor GPDB透明加密 解密 Query0 码力 | 48 页 | 10.19 MB | 1 年前3
Pivotal Greenplum 5: 新一代数据平台体产品方向产生影响,而这又会加快产品创新。 客户能够在群集中的一组初始服务器上部署 Pivotal Greenplum,并能在数据存储和用户需求增加时扩充配置中的服务器数 量,且无需卸载再重新加载数据。随着越来越多的客户将其生产数据集迁移到公有云中,这种灵活性将成倍增长。Pivotal Greenplum 目前可在 Amazon Web Services、Microsoft Azure 和 Google 云平台上运行,并且同时支持自带使用授权 (BI) 生成的 SQL 查询往往带有相关子查询,内部子查询需要外部查询的相关知识。GPORCA 可 以生成不相关的计划,这种计划只需查询一次。随后,系统将中间结果与主表结合,生成符合用户条件的结果集。借助上 述及其他优化方法,经过 GPORCA 优化的 SQL 查询可实现 10 倍甚至更大幅度的速度提升。但是,也有其他一些查询(尽 管数量不多)尚且无法通过 GPORCA 实现性能提升。随着 GPORCA 架构化查询语言性能提升 Pivotal Greenplum 5 对 SQL 查询处理进行了多项改进。广受欢迎的 SQL 结构——相关子查询(即嵌套在另一查询内的查 询)可使用来自外部查询的值。鉴于业界各大 BI/ 报告工具对子查询的广泛使用,这可以说是 GPORCA 中最重要的一项改 进了。在一些大型数据集中,对于外部查询所处理的每一行,系统都要对子查询进行一次计算,因此执行过程可能极为漫长。 GPORCA 的架构设0 码力 | 9 页 | 690.33 KB | 1 年前3
共 17 条
- 1
- 2













