积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(28)Greenplum(28)

语言

全部中文(简体)(28)

格式

全部PDF文档 PDF(28)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 28 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    ..................................................................................... - 21 - 数据是如何存储的 ................................................................................................. ...................................................................................... - 31 - 第四章:配置客户端认证 ............................................................................................. .......................................................................................... - 48 - 配置与使用资源组 ............................................................................................
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Greenplum数据仓库UDW - UCloud中立云计算服务商

    ⼆、 UDW 接⼊ SuperSet UDW 使⽤案例 使⽤案例 案例⼀ 利⽤ logstash+Kafka+UDW 对⽇志数据分析 案例⼆ 基于UDW实现⽹络流分析 PXF 扩展 扩展 配置 PXF 服务 创建 EXTENSION 读写 HDFS ⽬录 Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud 优刻得 4/206 194 196 的⽀持空间、地理位置应⽤。最新⽀持greeplum6.2.1版本。 云数据仓库产品架构 云数据仓库产品架构 云数据库仓库 UDW 服务的架构图如下所⽰: UDW 采⽤⽆共享的 MPP 架构,适⽤于海量数据的存储和计算。UDW 的架构如上图所⽰,主要有 Client、Master Node 和 Compute Node 组成。基本组成部分的功能如下: 产品架构 Greenplum数据仓库 UDW Copyright 调度分发执⾏计划 汇总 Segment 的执⾏结果并将结果返回给客⼾端 3. Compute Node: Compute Node 管理节点的计算和存储资源 每个 Compute Node 由多个 Segment 组成 Segment 负责业务数据的存储、⽤⼾ SQL 的执⾏ ⾼可⽤ ⾼可⽤ 产品架构 Greenplum数据仓库 UDW Copyright © 2012-2021 UCloud
    0 码力 | 206 页 | 5.35 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    ,在技术上也 难于满足数据计算性能指标,传统主机的 Scale-up 模式遇到了瓶颈, SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 GFS 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum 正是在这一背景下产生的,借助于分 布式计算思想,Greenplum 实现了基于数据库的分布式数据存储和并 行计算(GoogleMapReduce 实现的是基于文件的分布式数据存储和 计算,我们会在后面比较这两种方法的优劣性)。 话说当年 Greenplum(当时还是一个 Startup 公司,创始人家门口有 一棵青梅 ——green PG 有非常强大 SQL 支持能力和非常丰富的统计函数和统计语法 支持,除对 ANSI SQL 完全支持外,还支持比如分析函数(SQL2003 OLAP window 函数),还可以用多种语言来写存储过程,对于 Madlib、R 的支持也很好。这一点上 MYSQL 就差的很远,很多分 析功能都不支持,而 Greenplum 作为 MPP 数据分析平台,这些功 能都是必不可少的。 2) Mysql
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 最佳实践分享

    Greenplum运维常见问题  Greenplum运维常用命令  Greenplum日常检查和故障处理  Greenplum项目经验分享 内核参数  通常情况下,内核参数按照GPDB安装手册配置,如需要增加连接数支持,以下参数需要增大  kernel.shmmax = 1000000000  kernel.sem = 250 512000 100 2048  Redhat gp_autostats_on_change_threshold 5000000 5000000 gp_vmem_protect_limit 32768(64G内存时,其他配置 依据实际内存进行调整) 16384(64G内存时,其他配置 依据实际内存进行调整) gp_segment_connect_timeout 10min 10min log_min_duration_statement Instance实例数的配置建议 • Instance是GPDB的最小并行单元,每个Segment 节点一般配置4~8个Instance,初始化完成后很 难修改,需要提前规划; • 每个Instance都是一套独立的进程,当客户端 发起一个请求时,每个Instance都将FORK子进 程并行工作; • 对于并发请求高、面向于复杂的灵活查询的系 统,建议每个Segment配置4个或以下Instance,
    0 码力 | 41 页 | 1.42 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 5: 新一代数据平台

    的核心特征,及多年来围绕该平台发展出的生态系统。 摘要 Pivotal Greenplum 不受限于基础架构,这意味着它是一种可完全移植的分析数据库软件解决方案,可部署在多云环境(公 有云和私有云)中,也适用不同的本地配置。其大规模并行处理 (MPP) SQL 的设计核心是一个称为 GPORCA 的新一代查 询优化器。GPORCA 专为满足在多结构数据环境中进行高级分析的需求而设计,能够处理多种并发混合工作负载的复杂查 查询优化器相比,GPORCA 大幅度地提高了查询性能。 Pivotal Greenplum 5:新一代数据平台 作为重要的新版本,Pivotal Greenplum 5 带来了多项产品改进和新增功能,在管理数据和对数据库中存储的信息应用数据 科学、分析、报告和数据洞察方法方面,这些功能对大多数客户都很有帮助。Greenplum 解决方案的架构设计目的是管理 非常复杂的查询,以及为符合 ANSI 标准的 SQL 提供强有力 PostgreSQL 新增功能。 新一代 数据平台 IT 人员 开发 人员 业务 分析师 数据 科学家 灵活 部署 数据源和数据管道 Spring Cloud Data Flow ETL 本地存储 HDFSS 云对象 存储 GemFire Spark 其他 RDBMSes 多结构数据 PIVOTAL GREENPLUM 平台 原生接口 分析应用 用户 JDBC、OBBC Teradata SQL
    0 码力 | 9 页 | 690.33 KB | 1 年前
    3
  • pdf文档 并行不悖- OLAP 在互联网公司的实践与思考

    Ø不同数据量,不同事务特点,不同查询需求 Ø历史数据归档与冷热分离 Ø实时与延时需求的权衡 6 数据仓库体系架构 数据流转过程 • 1 业务数据的产生 —— OLTP • 2 业务数据的中转 —— ETL服务器 • 3 数据的存储和计算 —— OLAP集群 • 4 结果数据的展现 —— 数据集市 • 5 访问接口的封装 —— API接口服务器 • 6 最终数据的显示 —— 前端界面 • 7 结果数据的交互 —— OLTP,趋势分析 数据库归档,只能load,不支持DML – 对特定OLAP类查询有很好的支持作用 • 通用性数据仓库 —— Greenplum – 独立的数据库仓库解决方案 – 可以很好支持各种方式的数据加载和DML操作 – 具备海量的数据存储和计算性能 9 Greenplum现状说明 三 Greenplum体系架构 二 数据仓库体系架构 一 Greenplum开发规范 五 Greenplum运维体系 四 Greenplum扩展规划 10 greenplum体系架构 postgresql体系结构 11 greenplum体系架构 postgresql体系结构 • pg结构组成 Ø 连接关系系统 Ø 编译执行系统 Ø 存储执行系统 Ø 事务系统 Ø 系统表 • pg逻辑和物理结构 Ø instance实例 - user - tablesapce Ø database - schema - table,view,function
    0 码力 | 43 页 | 9.66 MB | 1 年前
    3
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    信息传播 合规性报告 资产组合分析 客户报表 电汇通知 分部记分卡 客户关系管理、收 购和盈利率 欺诈检测 欺诈分析 客户流失分析 响应时间 流量分析 产品关联/捆绑 零售 存储运营分析 客户忠诚度计划 协作规划和预估 预防亏损 优化供应链 当今的数据仓库方案 基于硬件 专有,昂贵 不可扩展 针对OLTP进行了优化 主流 10 数据库行业所面临的挑战 网络运算的发展速度已经超过了主流数据库 • 海量规模 • 高性价比 • 高效率 数据库管理系统(DBMS)的 规模/容量 11 需要采用一种新的方法 •“一切皆可商用”:商业即用型x86 服务器、存储设备、网络 •通过软件很容易将处理能力扩展到 1000s的内核/系统 Greenplum • “黑盒子” • “大铁箱” • 大磁盘 过去Google™ 曾经用来实现信息搜索功能的技术, 现在被Greenplum用于数据仓库 现在的解决方案 12 Greenplum愿景:企业数据集合 13 • 在企业内创建统一的数据运算平台 • 企业所有者可以直接控制其数据实例 • 通过实体整合提供企业级数据访问功能 • 灵活的扩展和配置降低了投资的平均风险 源文件 源数据 源数据 源文件 数据仓库和分析应 用程序 Greenplum数据架构 商用硬件集群 分析 数据 市场 企业数 据仓库 企业数据集合:主要的优势
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
  • pdf文档 Greenplum数据库架构分析及5.x新功能分享

    2013 Pivotal. All rights reserved. Greenplum 简介 4 Pivotal Confidential–Inter nal Use Only GPDB:为大数据存储、计算、挖掘而设计 Ÿ 标准 SQL 数据库:ANSI SQL 2008 标准,OLAP,JDBC/ODBC Ÿ 支持ACID、分布式事务 Ÿ 分布式数据库:线性扩展,支持上百物理节点 Ÿ 企业级数据库:全球大客户超过 无共享大规模并行处理 先进的查询优化器 多态存储系统 客户端访问 ODBC, JDBC, OLEDB, etc. 核心MPP 架构 并行数据流引擎 高速软数据交换机制 MPP Scatter/Gather 流处理 在线系统扩展 任务管理 服务 加载 & 数据联邦 高速数据加载 近实时数据加载 任意系统数据访问 存储 & 数据访问 混合存储引擎(行存&列存) 多种压缩,多级分区表 Confidential–Inter nal Use Only MPP(大规模并行处理)无共享体系架构 从主节点 … 主节点 SQL • 主节点和从主节点,主节点负责协调整个集群 • 一个数据节点可以配置多个节点实例(Segment Instances) • 节点实例并行处理查询(SQL) • 数据节点有自己的CPU、磁盘和 内存(Share nothing) • 高速Interconnect处理持续
    0 码力 | 44 页 | 8.35 MB | 1 年前
    3
  • pdf文档 Greenplum 分布式数据库内核揭秘

    李正龙 Confidential │ ©2021 VMware, Inc. Agenda 2 - Greenplum 分布式数据库简介 - Greenplum 集群化概述 - 分布式数据存储与多态存储 - 分布式查询优化器与执行器 - Greenplum 中文社区 3 Confidential │ ©2021 VMware, Inc. Greenplum 分布式数据库简介 Features Greenplum 是基于 PostgreSQL 所实现的大规模并行处理(MPP)开源数据平台,具有良好的弹性 和线性拓展能力,内置并行存储、并行通信、并行计算和并行优化功能,兼容 SQL 标准。拥有独 特的高效的 ORCA 优化器,具有强大、高效的 PB 级数据存储、处理和实时分析能力,同时支持 OLTP 型业务的混合负载。 Greenplum 分布式数据库简介 5 Confidential │ Segment 提供高可用支持 7 Confidential │ ©2021 VMware, Inc. Greenplum 分布式数据存储与多态存储 Hash/Randomly/Replicated Confidential │ ©2021 VMware, Inc. 8 数据存储分布化是分布式数据库要解决的第一个问题。 通过将海量数据分散到多个节点上,一方面大大降低了单个节点处理的数据量,另一方面也为处理
    0 码力 | 31 页 | 3.95 MB | 1 年前
    3
  • pdf文档 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum

    操作系统支持多设备,应用一次开发覆盖全场景。 openEuler 平台架构 openEuler 是覆盖全场景的创新平台,在引领内核创新,夯实云化基座的基础上,面向计算架构互联总线、存储介质 发展新趋势,创新分布式、实时加速引擎和基础服务,结合边缘、嵌入式领域竞争力探索,打造全场景协同的面向数字 基础设施的开源操作系统。 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum EulerFS:面向非易失性内存的新文件系统,采用软更新、目录双视图等技术减少文件元数据同步 时间,提升文件读写性能。 • 内存分级扩展 etMem:新增用户态 swap 功能,策略配置淘汰的冷内存交换到用户态存储,用户无感知,性能 优于内核态 swap。 2. 夯实云化基座 容器操作系统 KubeOS:云原生场景,实现 OS 容器化部署、运维,提供与业务容器一致的基于 K8S Embedded,镜像大小<5M,启动时间<5S。 4. 繁荣社区生态 友好卓面环境:UKUDDEXfce 卓面环境,丰富社区卓面环境生态。 • 欧拉 DevKit:支持操作系统迁移、兼容性评估、简化安全配置 secPaver 等更多开发工具。 Greenplum:新一代 HTAP 数据平台 Greenplum 自 2006 年发布第一个版本以来,就以精巧架构、简单易用、运行稳定、优异性能、环境适应性强在
    0 码力 | 17 页 | 2.04 MB | 1 年前
    3
共 28 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
GreenplumDatabase管理管理员指南数据仓库数据仓库UDWUCloud中立计算服务服务商精粹文集Pivotal最佳实践分享一代新一代平台并行并行不悖OLAP互联联网互联网公司思考数据管理分析数据分析解决方案解决方案据库数据库架构功能分布布式分布式内核揭秘完全兼容欧拉开源操作系统操作系统HTAP
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩