积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(20)Greenplum(20)

语言

全部中文(简体)(20)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.034 秒,为您找到相关结果约 20 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Greenplum数据仓库UDW - UCloud中立云计算服务商

    的⽀持空间、地理位置应⽤。最新⽀持greeplum6.2.1版本。 云数据仓库产品架构 云数据仓库产品架构 云数据库仓库 UDW 服务的架构图如下所⽰: UDW 采⽤⽆共享的 MPP 架构,适⽤于海量数据的存储和计算。UDW 的架构如上图所⽰,主要有 Client、Master Node 和 Compute Node 组成。基本组成部分的功能如下: 产品架构 Greenplum数据仓库 UDW Copyright 接收客⼾端的连接请求 负责权限认证 处理 SQL 命令 调度分发执⾏计划 汇总 Segment 的执⾏结果并将结果返回给客⼾端 3. Compute Node: Compute Node 管理节点的计算和存储资源 每个 Compute Node 由多个 Segment 组成 Segment 负责业务数据的存储、⽤⼾ SQL 的执⾏ ⾼可⽤ ⾼可⽤ 产品架构 Greenplum数据仓库 UDW 2012-2021 UCloud 优刻得 10/206 2.选择计算节点机型、计算节点数量以及付费⽅式。 其中可选的机型配置有: 机型 机型 名称 名称 配置 配置 存储密集型 ds1.large 4核 24G 2000G(SATA) 存储密集型 ds1.6xlarge 24核 144G 12000G(SATA) 计算密集型 dc1.large 2核 12G 300G(SSD) 快速上⼿
    0 码力 | 206 页 | 5.35 MB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    年的由慢到快的发展,累积了大量信息和数 据,数据在爆发式增长,这些海量数据急需新的计算方式,需要一场 计算方式的革命。 传统的主机计算模式在海量数据面前,除了造价昂贵外,在技术上也 难于满足数据计算性能指标,传统主机的 Scale-up 模式遇到了瓶颈, SMP(对称多处理)架构难于扩展,并且在 CPU 计算和 IO 吞吐上不 能满足海量数据的计算需求。 分布式存储和分布式计算理论刚刚被提出来,Google 的两篇著名论文 发表后引起业界的关注,一篇是关于 分布式文件系统,另外一篇 是关于 MapReduce 并行计算框架的理论,分布式计算模式在互联网 行业特别是收索引擎和分词检索等方面获得了巨大成功。 Big Date2.indd 1 16-11-22 下午3:38 2 由此,业界认识到对于海量数据需要一种新的计算模式来支持,这种 模式就是可以支持 Scale-out 横向扩展的分布式并行数据计算技术。 当时,开放的X86服务器技术已经能很好的支持商用,借助高速网络(当 X86 集群在整体上提供的计算能力已大幅高 于传统 SMP 主机,并且成本很低,横向的扩展性还可带来系统良好 的成长性。 问 题 来 了, 在 X86 集 群 上 实 现 自 动 的 并 行 计 算, 无 论 是 后 来 的 MapReduce 计算框架还是 MPP(海量并行处理)计算框架,最终还 是需要软件来实现,Greenplum 正是在这一背景下产生的,借助于分 布式计算思想,Greenplum
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    Standby : GP 的备用控制节点/实例 Host(主机) : GP 的一台独立的机器设备 Instance : GP 的计算实例,很多时候也叫 Segment Primary : GP 的主计算实例 Mirror : GP 的镜像计算实例 MPP : 大规模并行处理 算子 : 执行计划中的运算操作 背景简介 多年前,编者翻译了 GP4 .......................................................................................... - 12 - 计算实例:Instance ....................................................................................... ..................................................................................... - 24 - 角色与权限安全的最佳实践 ............................................................................................ -
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum

    .............................................................................. 5 openEuler 面向多样性算计算的创新 ............................................................................................... .............................................................................................. 8 安全可信 ................................................................................................ ....................................................................................... 11 利用容器实现安全分析 ................................................................................................
    0 码力 | 17 页 | 2.04 MB | 1 年前
    3
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    Enterprise Credibility Aging Proprietary Legacy Scalable, Open Software-Based Commodity HW • 用户人数 • 安全度 • 查询、报告、分析的数量 • 数据的高度多样性 • 大量定制数据 • 监管要求 商务智能/数据仓库发展趋势 一切都在增长! 数据仓库工作量:数据膨胀 面临的新难题是如何处理大规模数据 面临的新难题是如何处理大规模数据 过去的10年 现在 HPC 企业 SME 万亿字节 千兆字节 兆字节 千万亿字节 万亿字节 千兆字节 行业商务智能解决方案的实例 政府 电信 金融服务 公民服务 国家安全 电子政务 法规实施和监管 人力资本管理 信息传播 合规性报告 资产组合分析 客户报表 电汇通知 分部记分卡 客户关系管理、收 购和盈利率 欺诈检测 欺诈分析 客户流失分析 企业数据集合:主要的优势 • 实体整合 • 提高服务器使用率 • 降低总硬件成本 • 降低能量成本 • 可以预估的服务等级 • 确保关键任务的可靠性 • 最出色的性能 • 高度灵活性 • 逐步扩展计算能力 • 动态措施 • 数据访问: • 在一个系统中协调所有企业数据的位置 • 可以通过任何语言(SQL、M/R等)进行分析 14 强大并且不断扩展的合作伙伴网络 硬件供应商 商务智能工具
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 最佳实践分享

    在资源队列中降低查询的并发数  降低GP集群中单节点的Segment Instance数量  增加机器的内存  检查gp_vmem_protect_limit 参数, 确保其不要超过安全的最大值  在会话层面降低statement_mem 参数的设定值  在数据库层面降低statement_mem参数的设定值  在资源队列中限制内存使用量 OOM-解决办法 检查Raid卡状态和WriteBack – DCA v1使用omreport工具来检查,DCAv2采用CmdTool2 或MegaCli 问题定位方法 现象-系统突然运行缓慢 对于此类问题,问题原因可能是多方面的,定位比较困难,首先需要判断是硬件原因导致还是应用本身的原因导致,是某一SQL导致还是整体运 行变慢,找到具体的原因后,才能确定应对措施  检查當前所有设备IO,CPU使用情況: – CPU是否繁忙(gpssh
    0 码力 | 41 页 | 1.42 MB | 1 年前
    3
  • pdf文档 Greenplum机器学习⼯具集和案例

    HAWQ) 底层抽象层 (数组操作、类型转换、数值计算库等) 数据库内建函 数 ⽤用户接⼝口 ⾼高层抽象层 (迭代控制器器) 内循环函数 (实现机器器学习逻辑) Python SQL C++ MADlib 架构 2017.thegiac.com • 是一种由搜索引擎根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google 创办人 h_ps://en.wikipedia.org/wiki/PageRank 示例例 - PageRank 2017.thegiac.com 计算 数据 示例例 - PageRank 2017.thegiac.com 计算结果 示例例 - PageRank 2017.thegiac.com Greenplum 集群规模: ● 1 主 ● 4 数据节点 建模⼯工具 PL/pgSQL 数据和技术预览 2017.thegiac.com 数据整理理 数据准备 信息价值和证据权 重 成对相关性 删除⾼高度相关变量量 逻辑回归 计算 KS 分值 模型验证 ⼿手动预测 1 2 3 4 5 6 7 8 原始⼯工作流程 2017.thegiac.com 数据整理理 特征⽣生成
    0 码力 | 58 页 | 1.97 MB | 1 年前
    3
  • pdf文档 Greenplum on Kubernetes 容器化MPP数据库

    云数据库增速巨大 ● DBasS的需求 ● 跨云的需求 云数据库实现方案 云数据库需求 ● DBasS ○ 自动化运维 ○ 自动化调优 ● 弹性资源管理 ○ 存储资源 ○ 计算资源 ● 安全 ○ 用户数据 ○ 临时文件 ○ 网络传输 ○ 权限控制 ● 跨云 ○ 公有云 ○ 私有云 云数据库实现方案 ● 全新数据库 ○ Snowflake ● 原有数据库架构升级 PersistentVolumeClaim ○ 申请存储资源 Kubernetes 计算资源 Pod ● Pod ○ 计算任务 → 容器 → Pod ○ 资源分配:CPU,内存,磁盘 ○ 资源调度:Pod → Node ● Pod管理 ○ 无状态计算资源组:Deployment ○ 有状态计算资源组:StatefulSet ● Pod持久存储 ○ 通过PVC申请PV存储资源 Master节点示例 Segment节点示例 Greenplum on Kubernetes Greenplum on Kubernetes ● 存储计算分离 ○ PV持久化存储资源 ○ StatefulSet/Pod弹性扩展计算资源 ● 数据库服务层 ○ Service统一Master & Standby Master地址 ● 服务发现机制 ○ 所有节点地址名不变 ● 跨云能力
    0 码力 | 33 页 | 1.93 MB | 1 年前
    3
  • pdf文档 Greenplum 6: 混合负载的理想数据平台

    included_parts GROUP BY sub_part 16 Pivotal Confidential–Internal Use Only 窗口函数 表‘SALES’ 表‘SALES’ ■ 计算移动平均值或各种时间 间隔的总和 ■ 分组内重置聚合和排序 SELECT last_name, salary, department, rank() OVER Dynamic Partition Elimination 03 动态分区裁剪 公共表达式的下推 高效处理相关子查询 超过8年的投资,多位博士的长期贡献 基于Cascades / Volcano框架, Goetz Graefe 优化分布式大数据系统中特别复杂的查询 18 Madlib: 迭代并行模型训练 Master model = init(…) WHILE model not converged st_makepoint() 计算给定经纬 度方圆2KM的范围 GPText.search() 函数可 以知道是否一个人在 Pivotal工作 Greenplum MADlib BFS 算法可以 知道两个之间是否有直接联系 Greenplum模糊字符串匹 配函数Soundex() 可以 知道姓名是否发音是 ‘Pavan’或‘Peter’ Greenplum Time 函数计算24 小时内的取款时间
    0 码力 | 52 页 | 4.48 MB | 1 年前
    3
  • pdf文档 Greenplum 介绍

    是两个领域中排名前十的产品中的唯一一款开源产品。 Greenplum 基于 MPP(大规模并行处理)架构构建,具有良好的弹性和线性扩展能力,并内置 并行存储、并行通讯、并行计算和优化技术。同时,Greenplum 还兼容 SQL 标准,具备强大、 高效、安全的 PB 级结构化、半结构化和非结构化数据存储、处理和实时分析能力,可部署于企 业裸机、容器、私有云和公有云中。值得一提的是,作为 OLAP 型的大数据平台 eau、Anaconda、 Microstrategy、Boundless、Zattset、Datometry 等,涵盖 ETL、商业智能、高级分析、可视化、 集成分析、GIS 数据处理、迁移、安全和管理等各个领域。 更多信息请访问 greenplum.cn。
    0 码力 | 3 页 | 220.42 KB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
Greenplum数据仓库数据仓库UDWUCloud中立计算服务服务商精粹文集Database管理管理员指南完全兼容欧拉开源操作系统操作系统HTAP平台一代新一代数据管理分析数据分析解决方案解决方案Pivotal最佳实践分享机器学习案例onKubernetes容器MPP据库数据库混合负载理想介绍
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩