积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(23)Greenplum(23)

语言

全部中文(简体)(23)

格式

全部PDF文档 PDF(23)
 
本次搜索耗时 0.037 秒,为您找到相关结果约 23 个.
  • 全部
  • 数据库
  • Greenplum
  • 全部
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Greenplum on Kubernetes 容器化MPP数据库

    Kubernetes 容器化MPP数据库 AGENDA 云数据库背景 云数据库实现方案 Greenplum on Kubernetes Greenplum Operator 总结 云数据库背景 云数据库背景 ● 资源变化 ○ 本地资源 → 云 ○ 静态资源 → 弹性需求 ● 数据变化 ○ 内部数据 → 多数据源 ○ 数据规模 → 不易预测 ○ 数据格式 → 半结构化/无模式 ○ 数据隔离 云数据库需求 ● DBasS ○ 自动化运维 ○ 自动化调优 ● 弹性资源管理 ○ 存储资源 ○ 计算资源 ● 安全 ○ 用户数据 ○ 临时文件 ○ 网络传输 ○ 权限控制 ● 跨云 ○ 公有云 ○ 私有云 云数据库实现方案 ● 全新数据库 ○ Snowflake ● 原有数据库架构升级 ○ Vertica Eon Mode ● 容器化数据库+Kubernetes ○ Segment Instance Segment 5 (Mirror) 容器化Greenplum ? + = 容器化Greenplum ● 容器粒度 ○ Segment主机 VS. Segment实例 ● 容器资源分配 ○ CPU ○ 内存 ○ 磁盘 ● 容器间网络互联 ○ 本机网络 ○ 跨机网络 ● 容器化Greenplum部署策略 ○ Master部署策略 ○ Primary
    0 码力 | 33 页 | 1.93 MB | 1 年前
    3
  • pdf文档 基于 Greenplum 打造SaaS化电商服务平台

    基于GP打造SaaS化电商服务平台 聚水潭 秃鹰 赵坚密 2019.08.10 聚水潭成立于2014年1月,创始人兼CEO骆海东拥有超过二十年传统 及电商ERP的研发和实施部署经验,公司核心管理团队来自于阿里巴 巴、亚马逊、中国平安和麦包包等知名公司。 聚水潭创建之初,以电商SaaS ERP切入市场,凭借出色的产品和服务, 快速获得市场领先地位。随着客户需求的不断变化,如今聚水潭已经 发展成为以SaaS
    0 码力 | 7 页 | 547.94 KB | 1 年前
    3
  • pdf文档 Greenplum 精粹文集

    要专注在分布式技术中最核心的并行处理技术上面,协调我们下面 的轮子跑的更快更稳才是我们的最终目标。而数据库底层组件就像 车轮一样,经过几十年磨砺,数据库引擎技术已经非常成熟,大可 不必去重新设计开发,而且把数据库底层交给其它专业化组织来开 发(对应到 Postgresql 就是社区),还可充分利用到社区的源源不 断的创新能力和资源,让产品保持持续旺盛的生命力。 这也是我们在用户选型时,通常建议用户考察一下底层的技术支撑 是不 Postgresql 而不是其它的? 我想大家可能主要想问为什么是 Postgresql 而不是 Mysql ?(其实, 还有很多开源关系型数据库,但相比这两个主流开源库,实在不在 一个起跑线上)。我们无意去从技术点上PK这两个数据库孰优孰劣, 我相信它们的存在都有各自的特点,它们都有成熟的开源社区做支 持,有各自的庞大的 fans 群众基础。我们认为,Greenplum 选择 Postgressql 有以下考虑: 亿条记录做逻辑回归,采用一台小型机耗时约 4 个 多小时,通过部署到 Greenplum 集群中,耗时不到 2 分钟就全部完成 了。以 GPEXT 为例,下图展现了 Solr 全文检索在 Greenplum 中的并 行化风格。 Big Date2.indd 10 16-11-22 下午3:38 Greenplum 精粹文集 11 最 后, 也 许 你 会 有 问 题,Greenplum 采 用 Master-slave
    0 码力 | 64 页 | 2.73 MB | 1 年前
    3
  • pdf文档 完全兼容欧拉开源操作系统的 HTAP 数据平台 Greenplum

    ........................................................................................... 8 构筑云化基座 ................................................................................................. 析数据平台 Greenplum,用实践证明了 Greenplum 与支持多样性计算的欧拉开源操作系统完全兼容,是 Greenplum 与中国本地 IT 厂商的深入合作的典型模板,大大丰富了中国本地国产化应用生态。本白皮书着眼介绍了欧拉开源操作系 统平台架构、创新性及核心特点, 同时介绍了 Greenplum 作为一款深受技术爱好者喜爱的、中立的纯开源软件,践行 “Run Everywhere”原 不同芯片的环境,适合本地部署、多云环境(公有云和私有云)中。Greenplum 6 及未来发布的 Greenplum 7 丰富的 HTAP 特性,具备良好性能、可靠性和稳定性,使得 Greenplum 不仅可以作为全能的分析化平台,也能满足交易型业 务场景,能够处理多种并发混合工作负载,专为满足在多结构数据环境中进行实时分析的需求而设计。 欧拉开源操作系统是一款面向数字基础设施的操作系统,支持服务器、云计算、边缘计算、嵌入式等应用场景,支持多
    0 码力 | 17 页 | 2.04 MB | 1 年前
    3
  • pdf文档 Greenplum 排序算法

    就越高,需要读取外存的次数也越多,有没有办法在分割阶段就生成大于内存 大小的顺串呢? 归并排序的三个问题 23 替换选择算法 24 Knuth 5.4.1R替换选择算法: ● 1. 初始化阶段,读取输入元组至内存,并建立最小堆。 ● 2. 弹出堆顶元组,输出到顺串文件的缓冲区,并记录该元组的排序键为 lastkey。 ● 3. 读取新元组,如果元组排序键大于等于lastkey,插入堆顶,并调整堆,使其有 . . 1 6 7 8 10 . . . 输 出 缓 冲 区 输 入 缓 冲 区 27 败者树算法(GP目前使用堆): ● 1. 输入每个顺串的第一个记录作为败者树的叶子节点。建立初始化败者树。 ● 2. 两两相比较,父亲节点存储了两个节点比较的败者(节点较大的值);胜利者 (较小者)可以参与更高层的比赛。这样树的顶端就是当次比较的冠军(最小 者)。 ● 3. 调整败者树,当我们 0 0 1(32) 1(32) 1(64) 0 0 0 IO次数:64 * 6 = 384 个基础顺串: 每个顺串平均6次移动 33 Knuth 5.4.2D多相归并排序算法 ● 1. 初始化阶段,N+1个缓冲区,其中N个为输入缓冲区和1个为输出缓冲区。其 中,每一个输入缓冲区包含若干个顺串,缓冲区顺串个数服从斐波纳切分布。 ● 2. 从每个输入缓冲区选取开头的顺串,组成N个顺串(可以存在空顺串)。对N个
    0 码力 | 52 页 | 2.05 MB | 1 年前
    3
  • pdf文档 Greenplum Database 管理员指南 6.2.1

    ............................................................................. - 263 - 第十二章:安装部署与初始化 .............................................................................................. - 265 ......................... - 284 - 初始化 GP 数据库集群 ................................................................................................... - 285 - 创建初始化网络端口文件 ............................... 版权所有:Esena(陈淼 +86 18616691889) 编写:陈淼 - 8 - 创建初始化配置文件 .............................................................................................. - 286 - 执行初始化操作 ........................................
    0 码力 | 416 页 | 6.08 MB | 1 年前
    3
  • pdf文档 Greenplum 新一代数据管理和数据分析解决方案

    对本地磁盘进行直 接的高性能访问 gNet 互连 • 第一个支持互联网级分析技术(由Google普及)的产品 • 采用新的编程模型,在商用硬件上并行处理和执行 • 可以使客户洞察力和数据货币化程度达到前所未有的高度 MapReduce Greenplum MapReduce的优势 • 处理在任何地点存储的任何类型的数 据 • 将SQL的普遍性与MapReduce的灵 活编程模式结合起来 巨人网络(征途游戏):财务分析、游戏在线分析 • 阿里巴巴:B2B、B2C、点击、在线分析 • 上海航空:航线结算分析 • 东方航空:航线结算分析 • 民族证券:数据中心,证券投资分析 • 北京第二外语大学:图书分析 • 中信银行:信用卡分析 • 深发展银行:数据中心兼ODS • 李宁公司:销售和库存分析 • 公安部:图像分析 • 国家海洋局:海洋数据采集与分析 • 上海安吉物流:收入&市场分析、客户经理跟踪分析 Oracle GreenPlum 结算 ETL Staging ETL 结算 ODS Export 文 本 Query (oracle native driver) BO前端 呼叫 中心 航线 分析 其他 ETL ETL ETL 原有数据仓 库部分(包 括EDW, DM, ODS。不含 结算ODS ) Query (ODBC) Load Universe Universe
    0 码力 | 45 页 | 2.07 MB | 1 年前
    3
  • pdf文档 Greenplum数据仓库UDW - UCloud中立云计算服务商

    客户端⼯具访问UDW udw⽀持按照postgresql的客⼾端来访问udw,⽀持udw客⼾端访问,还可以⽀持jdbc、odbc、php、python、psql等⽅式来访问udw。另外,也可以通过图形化的SQL Workbench/J、 Navicat等⼯具来访问udw。 1.1 psql客户端⽅式访问 客户端⽅式访问 下载psql客⼾端 yum install postgresql.x86_64 开发指南 开发指南 1、连接数据库 、连接数据库 udw ⽀持按照 postgresql ⽅式来访问 udw,可以⽀持 jdbc、odbc、php、python、psql 等⽅式来访问 udw。图形化的 pgAdmin、SQL Workbench/J 等⼯具 1.1 psql 客户端⽅式访问 客户端⽅式访问 下载 psql 客⼾端(或者通过控制台下载 udw 客⼾端) yum install BY(key))和随机分布(DISTRIBUTED RANDOMLY)。如果不指定分布策略则默认按primary key或者第⼀个column 做哈希分布。 为了尽可能的并⾏处理数据,需要选择能够最⼤化地将数据均匀分布到所有计算节点的策略,⽐如选择 primary key;分布式处理中将会存在本地和分布式协作的操作,当不同的表使⽤相 同的分布键的时候,⼤部分的排序、连接关联操作⼯作将会在本地完成,
    0 码力 | 206 页 | 5.35 MB | 1 年前
    3
  • pdf文档 Pivotal Greenplum 5: 新一代数据平台

    ..............................................................................................7 架构化查询语言性能提升 ........................................................................................... Pivotal Network 分发的打包版本将具有相同的内核(只有个别微小差 别)。这是两年来致力于与 PostgreSQL 8.3.23 集成的成果,目的在于扩展和融入以 Greenplum 为中心的生态系统和社 区。为了更好地贴合 PostgreSQL 社区的模式,他们对代码库进行了重构,这样一来,便可以更轻松地从最新版本(未来 的 PostgreSQL 9.X 和 10)中纳入 PostgreSQL Teradata SQL Apache MADlib Python. R、 Java、Perl、C Apache SOLR PostGIS ANSI SQL 其他数据库 SQL ML/统计数据/图形 程序化 文本 地理空间 公有云 私有云 完全 托管云 本地 BI / 报告 自定义应用 机器学习 AI SQL 大规模 并行处理 (MPP) PB 级数据 加载 查询 优化器 (GPORCA) Workload
    0 码力 | 9 页 | 690.33 KB | 1 年前
    3
  • pdf文档 Greenplum 介绍

    MPP(大规模并行处理)架构构建,具有良好的弹性和线性扩展能力,并内置 并行存储、并行通讯、并行计算和优化技术。同时,Greenplum 还兼容 SQL 标准,具备强大、 高效、安全的 PB 级结构化、半结构化和非结构化数据存储、处理和实时分析能力,可部署于企 业裸机、容器、私有云和公有云中。值得一提的是,作为 OLAP 型的大数据平台, Greenplum 同 时还能够支持涵盖 OLTP 型业务的混合 储、三星、戴尔、福特、 爱立信等,国内客户包括深交所、建设银行、民生银行、广大银行、浦发银行、航旅纵横、中国 移动、华为等。自 2015 年开源以来,更是吸引了包括阿里云、百度云、中移动、旷世、去哪儿 网、易观、腾云科技、饿了么、金风科技在内大量开源用户。 Greenplum 大数据平台的优势 ● 一次打包到处运行的平台:部署灵活,不受限于硬件环境和平台,无论裸机、私有云、公 Kafka、Hadoop、HIVE、 HBase、S3、Gemfire、各种数据库和文件等,不需要移动数据,避免了数据加载的复杂 性,和其带来的数据不一致的问题。 ● 支持各种数据格式的平台:不管是结构化、半结构化(XML、JSON、KV)还是非结构化, 譬如文本数据、GIS 数据、图数据等。 ● 具有强大内核的平台:Greenplum 具有强大的内核技术,包括数据水平分布、并行查询执 行、专业优化器、线性扩展能力、
    0 码力 | 3 页 | 220.42 KB | 1 年前
    3
共 23 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
GreenplumonKubernetes容器MPP数据据库数据库基于打造SaaS电商服务平台服务平台精粹文集完全兼容欧拉开源操作系统操作系统HTAP排序算法Database管理管理员指南一代新一代数据管理分析数据分析解决方案解决方案仓库数据仓库UDWUCloud中立计算服务商Pivotal介绍
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩