Rust并行编译的挑战与突破WorkerLocal数据结构设计 挑战:缓存系统访问热点效率瓶颈 thread1 thread2 thread3 threadN ... 多线程调用查询 type_of typeck borrow_ck impl_trait adt_def impl_defaul tness param_env fn_sig ... 查询互相调用 查询缓存系统 查询依赖信息 查询结果缓存 查询执行状态 查询保存文件 查询保存文件 性能瓶颈点 频繁访问查询系统,成为效率瓶颈点 挑战:缓存系统访问热点效率瓶颈 Sharded —— 接口统一,存储分离 cache1 cache2 cache3 cacheM ... thread1 thread2 thread3 threadN ... 根据Key哈希值决定索引 Sharded数据结构设计 Rust并行编译的未来 · 抹平共享数据结构造成的性能差距 · 深化编译器并行化 从并行编译到并行程序设计 用巧妙的数据结构设计化解效率瓶颈 • thread_local • specialization • WorkerLocal • 线程级缓存 用优秀的设计消减数据同步代价 读写分离 限制作用范围 COPY-WRITE机制 优化并行粒度 任务粒度与并行效率的关系 rayon库中的粒度控制函数 死锁的检测和处理 基于rayon线程池的自动触发式死锁检测0 码力 | 25 页 | 4.60 MB | 1 年前3
新一代分布式高性能图数据库的构建 - 沈游人,可扩展的分析引擎支持更复 杂的数据挖掘和机器学习场景 MPP Massively Parallel Processing 架构,大规模集群 分布式存储及并行计 算, Shared Nothing 模式支 持存储计算分离 高性能 基于 Rust 开发的分布式存储引 擎及图计算引擎,精细的内存 管理设计,内置索引系统,支 持毫秒级的并发查询响应速度 易用 AQL(Atlas Graph Query Language) 实际执行时,执行器等待流数据,处 理后将数据推送到下一个执行器 切分执行计划,将执行计划划分成不 同的执行阶段 内存缓存结构:加速图数据查询 • 由于图数据的查询通常是 IO 密集型,且访问的数据随机又分散,拥有内存缓存能起到很 好的加速效果 • 要想让内存缓存发挥最大的作用,就要能在有限的内存中存下尽量多的图数据 • 例如,对于属性的存储,可以通过自行序列化 / 反序列化大幅节省内存 u32 u32 string string 定长 变长 高可用技术方案 基于 Chain Replication ( CRAQ ) 算法实现,进行数据副本处理,头 结点写,多结点读,支持读写分离 ,提供更好的并发查询能力 数据高可用实现 Chain Replication 数据高可用方案 服务高可用实现 系统中 Meta , TS 服务采用主备架 构,基于 Raft 算法实现租约,进行0 码力 | 38 页 | 24.68 MB | 1 年前3
Rust 程序设计语言 简体中文版 1.85.0cargo add rand@0.8.5 trpl@0.2.0 这会将这些包的下载结果缓存起来,因此你之后就不需要再下载它们了。运行完该命令后,你 无需保留 get-dependencies 文件夹。一旦你运行了这些命令,就可以在本书之后所有的 cargo 命令中,使用 --offline 参数来使用这些缓存的版本,而不必尝试使用网络。 14/562Rust 程序设计语言 简体中文版 Hello • 更新到新版的 Rust • 打开本地安装的文档 • 直接通过 rustc 编写并运行 Hello, world! 程序 • 使用 Cargo 创建并运行新项目 是时候通过构建更实质性的程序来熟悉读写 Rust 代码了。所以在第二章我们会构建一个猜数 字游戏程序。如果你更愿意从学习 Rust 常用的编程概念开始,请阅读第三章,接着再回到第 二章。 21/562Rust 程序设计语言 简体中文版 现在有了一个找到字符串中第一个单词结尾索引的方法,不过这有一个问题。我们返回了一个 独立的 usize,不过它只在 &String 的上下文中才是一个有意义的数字。换句话说,因为它是 一个与 String 相分离的值,无法保证将来它仍然有效。考虑一下示例 4-8 中使用了示例 4-7 中 first_word 函数的程序。 文件名:src/main.rs fn main() { let mut s0 码力 | 562 页 | 3.23 MB | 25 天前3
Rust 程序设计语言简体中文版更新到新版的 Rust • 打开本地安装的文档 • 直接通过 rustc 编写并运行 Hello, world! 程序 • 使用 Cargo 创建并运行新项目 是时候通过构建更实质性的程序来熟悉读写 Rust 代码了。所以在第二章我们会构建一个猜猜 看游戏程序。如果你更愿意从学习 Rust 常用的编程概念开始,请阅读第三章,接着再回到第 二章。 22/600 Rust 程序设计语言 简体中文版 工作,这是因为分 配器必须首先找到一块足够存放数据的内存空间,并接着做一些记录为下一次分配做 准备。 访问堆上的数据比访问栈上的数据慢,因为必须通过指针来访问。现代处理器在内存 中跳转越少就越快(缓存)。继续类比,假设有一个服务员在餐厅里处理多个桌子的 点菜。在一个桌子报完所有菜后再移动到下一个桌子是最有效率的。从桌子 A 听一个 菜,接着桌子 B 听一个菜,然后再桌子 A,然后再桌子 B 这样的流程会更加缓慢。出 现在有了一个找到字符串中第一个单词结尾索引的方法,不过这有一个问题。我们返回了一个 独立的 usize ,不过它只在 &String 的上下文中才是一个有意义的数字。换句话说,因为它 是一个与 String 相分离的值,无法保证将来它仍然有效。考虑一下示例 4-8 中使用了示例 4-7 中 first_word 函数的程序。 文件名:src/main.rs # fn first_word(s: &String)0 码力 | 600 页 | 12.99 MB | 1 年前3
Rust 语言学习笔记具体内容需要查看闭包的可变借用。 3.2 引用和借用 所有权系统允许我们通过“Borrowing”的方式达到这个目的。这个机制非常像 其他编程语言中的“读写锁”,即同一时刻,只能拥有一个“写锁”,或只能 拥有多个“读锁”,不允许“写锁”和“读锁”在同一时刻同时出现。当然这 也是数据读写过程中保障一致性的典型做法。只不过 Rust 是在编译中完成这个 (Borrowing)检查的,而不是在运行时,这也就是为什么其他语言程序在运行过 引用。 2.在借用周期内,借用方可以读写这块内存,所有者被禁止读写内存;且所有 者保证在有“借用”存在的情况下,不会释放或转移内存。 3.失去所有权的变量不可以被借用(访问)。 4.在租借期内,内存所有者保证不会释放/转移/可变租借这块内存,但如果是 在非可变租借的情况下,所有者是允许继续非可变租借出去的。 5.借用周期满后,所有者收回读写权限。 6.借用周期小于被借用者(所有者)的生命周期。 = &x as *const i32; let points_at = unsafe { *raw }; println!("raw points at {}", points_at); 2.读写一个可变的静态变量 static mut static mut N: i32 = 5; unsafe { N += 1; println!("N: {}", N); }0 码力 | 117 页 | 2.24 MB | 1 年前3
Rust分布式账务系统 - 胡宇TPS 的流量 可演化性:业务逻辑与底层 API 解耦,当业务发生改变 时,底层 API 不用改变 分布式账务系统 设计理念 - Rust 是我们可靠的基石 分布式账务系统 存算分离 API 解耦 读写分离 层级账号 Rust ● 事务层与账户层分 离 ● 独立水平扩展 ● CQRS ● Event Sourcing ● 针对读场景,写场 景分别优化 ● 稳定的底层 API0 码力 | 27 页 | 12.60 MB | 1 年前3
Hello 算法 1.1.0 Rust版3 列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4 内存与缓存 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5 小结 . . . . . 序便可以访问内存中的数据。 图 3‑2 内存条、内存空间、内存地址 Tip 值得说明的是,将内存比作 Excel 表格是一个简化的类比,实际内存的工作机制比较复杂,涉及地址 空间、内存管理、缓存机制、虚拟内存和物理内存等概念。 内存是所有程序的共享资源,当某块内存被某个程序占用时,则无法被其他程序同时使用了。因此在数据结 构与算法的设计中,内存资源是一个重要的考虑因素。比如,算法所占用的内存峰值不应超过系统剩余空闲 优化数据结构的操作效率。 ‧ 空间效率高:数组为数据分配了连续的内存块,无须额外的结构开销。 ‧ 支持随机访问:数组允许在 ?(1) 时间内访问任何元素。 ‧ 缓存局部性:当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下局限性。 ‧ 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。0 码力 | 388 页 | 18.50 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Rust 版3 列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4 内存与缓存 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5 小结 . . . . . 序便可以访问内存中的数据。 图 3‑2 内存条、内存空间、内存地址 Tip 值得说明的是,将内存比作 Excel 表格是一个简化的类比,实际内存的工作机制比较复杂,涉及地址 空间、内存管理、缓存机制、虚拟内存和物理内存等概念。 内存是所有程序的共享资源,当某块内存被某个程序占用时,则通常无法被其他程序同时使用了。因此在数 据结构与算法的设计中,内存资源是一个重要的考虑因素。比如,算法所占用的内存峰值不应超过系统剩余 优化数据结构的操作效率。 ‧ 空间效率高:数组为数据分配了连续的内存块,无须额外的结构开销。 ‧ 支持随机访问:数组允许在 ?(1) 时间内访问任何元素。 ‧ 缓存局部性:当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下局限性。 ‧ 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。0 码力 | 387 页 | 18.51 MB | 10 月前3
Hello 算法 1.0.0 Rust版3 列表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.4 内存与缓存 * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.5 小结 . . . . . ,程序便可以访问内存中的数据。 图 3‑2 内存条、内存空间、内存地址 � 值得说明的是,将内存比作 Excel 表格是一个简化的类比,实际内存的工作机制比较复杂,涉 及地址空间、内存管理、缓存机制、虚拟内存和物理内存等概念。 内存是所有程序的共享资源,当某块内存被某个程序占用时,则无法被其他程序同时使用了。因此在数据结 构与算法的设计中,内存资源是一个重要的考虑因素。比如,算法所占用的内存峰值不应超过系统剩余空闲 优化数据结构的操作效率。 ‧ 空间效率高:数组为数据分配了连续的内存块,无须额外的结构开销。 ‧ 支持随机访问:数组允许在 ?(1) 时间内访问任何元素。 ‧ 缓存局部性:当访问数组元素时,计算机不仅会加载它,还会缓存其周围的其他数据,从而借助高速缓 存来提升后续操作的执行速度。 连续空间存储是一把双刃剑,其存在以下局限性。 ‧ 插入与删除效率低:当数组中元素较多时,插入与删除操作需要移动大量的元素。0 码力 | 383 页 | 17.61 MB | 1 年前3
Rust语言核心竞争力-庄晓立安全地读写内存 • 在限定时间和空间范围内读写内存 • 防止被他人意外修改或释放 • 避免访问空指针和野指针 安全地释放内存 • 在恰当的时机释放 • 确保释放,不遗漏 • 仅释放一次 内存不安全? • 指针越界访问,意外修改别处内存 • 内存被提前释放,形成野指针,非法读写内存 • 野指针又转化为合法指针,意外修改别处内存 • NULL指针解引用,非法操作 • 并发读写同一内存地址,数据竞争0 码力 | 51 页 | 1.09 MB | 1 年前3
共 21 条
- 1
- 2
- 3













