刘用涛 CnosDB时序数据库的Rust实践第三届中国Rust开发者大会 CnosDB时序数据库的Rust实践 Yongtao Liu CnosDB 研发工程师 Rust China Conf 2023 CnosDB 是一款基于 Rust 开发的 开源的分布式时序数据库 1. CnosDB 架构与选型 2. 为何从 Go 切换到 Rust 3. 使用 Rust 经验分享 4. 反哺社区 Optimizer Pluggable Scheduler Logical transform Physical transform 1.4基于DataFusion的高性能查询引擎 • 扩展数据源 • 扩展 SQL 语句 • 扩展流处理引擎 • 扩展优化规则 • 扩展时序函数 1.5 分布式 1. Shared nothing 2. Leaderless NRW vnode vnode vnode vnode vnode vnode... ...... ...... Time Line Meta集群:schema,tenant信息,分片信息 数据节点:存储 vnode数据 Raft write point replica set ...... bucket bucket replica set 2. 为何从 Go0 码力 | 26 页 | 3.28 MB | 1 年前3
新一代分布式高性能图数据库的构建 - 沈游人新一代分布式高性能图数据库的构建 北京海致星图科技有限公司 2023-06-18 沈游人 数据库与大数据专场 海致简介—企业级知识图谱开创者 专业顶尖技术团队支撑 超 700 人团队,其中 80% 为技术人员,创始团队在完成全球第一个中文知 识图谱网站研发后,探索知识图谱技术在企业领域的应用。 2021 年,海致院 士专家工作站成立,站内清华大学计算机博士生占比达 90% 以上。 企业级数据解决方案专家 为建行、工行、交行、招行、上交所、深交所、中国人寿等 70+ 银行证券保险 企业、公安部、上海市公安局、武汉市公安局等 100+ 公安机构,国家电网、 国信通产业集团等电力能源行业提供数据智能产品解决方案及长期服务。 海致专注为政府、金融、能源等客户提供大数据处理、分析、挖掘服务,在互 联网技术基础上,打造专业、易用的企业级大数据实战应用产品及解决方案。 北京中关村总部 北京中关村总部 武汉运维中心 深圳研发中心 上海应用中心 专注于数据智能技术赋能中国数字经济发展 海致高性能图计算院士专家工作站 郑纬民 - 海致科技首席科学家 中国工程院院士、清华大学计算机科学与技术系教 授、中国计算机学会前理事长,中国计算机系统结构 的学科带头人,我国高性能计算和存储系统等方面的 泰斗和先行者。 2021 年 3 月 25 日,海致科技与清华大学计算机科学与技术系共同建设高性能图计算院士专家工作站0 码力 | 38 页 | 24.68 MB | 1 年前3
基于 Rust Arrow Flight 的物联网和时序数据传输及转换工具 霍琳贺的物联网和时序数据传输及 转换工具 霍琳贺 涛思数据 Rust China Conf 2023 CONTENTS 自 我 介 绍 T D e n g i n e t a o s X R u s t 使 用 TDengine Rust • OOXML - Excel 解析库 • xlsx2csv - Excel 转 CSV 工具 • Unqlite - 单文件非关系型数据库 • 连接器 • 数据可视化 • 数据库运维工具 • 第三方数据源接入 • BI 系统接入 https://taosdata.com/ https://github.com/zitsen CONTENTS 自 我 介 绍 T D e n g i n e t a o s X R u s t 使 用 TDengine: 时序数据库 TDengine 是一款开源、云原生的时序数据库( Time ),专为物联网、工业互联网、金融、 IT 运维监控等场景设计并优化,具有极强的弹性伸缩能力。同时它还带有内建的缓存、流式计算、数据订阅等 系统功能,能大幅减少系统设计的复杂度,降低研发和运营成本,是一个极简的时序数据处理平台。 采用关系型数据库模型 需要建库、建表, 为提升写入和查询效率,要求一个数据采集点一张表 为实现多表聚合,引入超级表概念 子表通过超级表创建,带有标签,通过标签实现多表0 码力 | 29 页 | 2.26 MB | 1 年前3
基于 Rust 语言编写的可编程的全球分布式 MQTT 服务器 王文庭HPMQ开发说明 HPMQ未来规划 O3 1. 背景说明 物联⽹时代带来的变化 海量 连⽹ 设备 海量数据处理? 设备安全性? 共性:边缘 原来以数据中 ⼼为核⼼的云 端架构是否还 满⾜需求? 01 02 03 边缘架构 ⼀种分布式计 算架构 构成边缘 计算架构 的核⼼ 可在边缘直接对数据进⾏相 关的计算(处理/存储)并提 供相应的查询功能 边缘架构 物联⽹设备的纽带 • 内存安全(Rust/Golang/Java) • 对WebAssembly⽣态⽀持友好 Why Rust? • 云端架构,我们⽆法根据设备地理位置实现就近通讯 • 只能做到在数据中⼼内相关的分布式扩展,⽆法直接进⾏ 全球节点的扩展 • 复杂的容灾⽅案 为什么需要geo-distributed 传统⽅案存在有问题 解决⽅案 geo-distributed架构 + 了很多分布式⽹络管理的共同的问题, ⽐如说分布式消息⼀致性问题,边缘节 点⾃动发现等问题 传统⽅案痛点 1)数据传输量⼤,中⼼压⼒⼤,⾼可⽤要求⾼ 2)数据发布与订阅都在中⼼,延迟⾼ 3)源站直接暴露 4)数据不好就近进⾏脱敏处理 5)数据不好就近进⾏存储 新⽅案优势 1)分摊中⼼压⼒ 2)降低延迟 3)隐藏源站 4)边缘计算 5)边缘存储0 码力 | 31 页 | 3.95 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Rust 版力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 “知识地图”,带你了解不同“地雷”的形状、大小和分布位置,让你掌握各种“排雷方法”。有了这些本领, 相信你可以更加自如地刷题和阅读文献,逐步构建起完整的知识体系。 我深深赞同费曼教授所言:“Knowledge 动画在 PDF 内的展示效果受限,可访问 www.hello‑algo.com 网页版以获得更优的阅读体验。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读!” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算机的出现给世界带来了巨大 的自然交互,这些应用都是算法在计算机上的精妙演绎。 事实上,在计算机问世之前,算法和数据结构就已经存在于世界的各个角落。早期的算法相对简单,例如古 代的计数方法和工具制作步骤等。随着文明的进步,算法逐渐变得更加精细和复杂。从巧夺天工的匠人技艺、 到解放生产力的工业产品、再到宇宙运行的科学规律,几乎每一件平凡或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小0 码力 | 387 页 | 18.51 MB | 10 月前3
Hello 算法 1.1.0 Rust版力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 “知识地图”,带你了解不同“地雷”的形状、大小和分布位置,让你掌握各种“排雷方法”。有了这些本领, 相信你可以更加自如地刷题和阅读文献,逐步构建起完整的知识体系。 我深深赞同费曼教授所言:“Knowledge 仓库。 动画在 PDF 内的展示效果受限,可访问 hello‑algo.com 网页版以获得更优的阅读体验。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读!” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 计算机的出现给世界带来了巨大 的自然交互,这些应用都是算法在计算机上的精妙演绎。 事实上,在计算机问世之前,算法和数据结构就已经存在于世界的各个角落。早期的算法相对简单,例如古 代的计数方法和工具制作步骤等。随着文明的进步,算法逐渐变得更加精细和复杂。从巧夺天工的匠人技艺、 到解放生产力的工业产品、再到宇宙运行的科学规律,几乎每一件平凡或令人惊叹的事物背后,都隐藏着精 妙的算法思想。 同样,数据结构无处不在:大到社会网络,小到地铁线路,许多系统都可以建模为“图”;大到一个国家,小0 码力 | 388 页 | 18.50 MB | 1 年前3
Hello 算法 1.0.0 Rust版力,啃厚重的书往往变成了一项艰巨的挑战。 如果你也面临类似的困扰,那么很幸运这本书“找”到了你。本书是我对这个问题给出的答案,即使不是最 优解,也至少是一次积极的尝试。本书虽然不足以让你直接拿到 Offer,但会引导你探索数据结构与算法的 “知识地图”,带你了解不同“地雷”的形状、大小和分布位置,让你掌握各种“排雷方法”。有了这些本领, 相信你可以更加自如地刷题和阅读文献,逐步构建起完整的知识体系。 我深深赞同费曼教授所言:“Knowledge 仓库。动画在 PDF 内的 展示效果受限,可访问 hello‑algo.com 网页版以获得更优的阅读体验。 推荐语 “一本通俗易懂的数据结构与算法入门书,引导读者手脑并用地学习,强烈推荐算法初学者阅读!” ——邓俊辉,清华大学计算机系教授 “如果我当年学数据结构与算法的时候有《Hello 算法》,学起来应该会简单 10 倍!” ——李沐,亚马逊资深首席科学家 i 目 录 第 0 章 前言 . . . . . . . . . . . . . . . . . . 49 第 3 章 数据结构 51 3.1 数据结构分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 基本数据类型 . . . . . . . . . . . . . . . . . . . . . .0 码力 | 383 页 | 17.61 MB | 1 年前3
Hello 算法 1.2.0 繁体中文 Rust 版現。 兩種實現的對比結論與堆疊一致,在此不再贅述。 5.2.3 佇列典型應用 ‧ 淘寶訂單。購物者下單後,訂單將加入列列中,系統隨後會根據順序處理佇列中的訂單。在雙十一期 間,短時間內會產生海量訂單,高併發成為工程師們需要重點攻克的問題。 ‧ 各類待辦事項。任何需要實現“先來後到”功能的場景,例如印表機的任務佇列、餐廳的出餐佇列等, 佇列在這些場景中可以有效地維護處理順序。 5.3 雙向佇列 ‧ 對雜湊函式和雜湊衝突處理策略的依賴性較高,具有較大的效能劣化風險。 ‧ 不適合資料量過大的情況,因為雜湊表需要額外空間來最大程度地減少衝突,從而提供良好的查詢效 能。 樹查詢 ‧ 適用於海量資料,因為樹節點在記憶體中是分散儲存的。 ‧ 適合需要維護有序資料或範圍查詢的場景。 ‧ 在持續增刪節點的過程中,二元搜尋樹可能產生傾斜,時間複雜度劣化至 ?(?) 。 ‧ 若使用 AVL 樹或紅黑樹,則各項操作可在 ? 這種思路實際上就是“合併排序”,時間複雜度為 ?(? log ?) 。 再思考,如果我們多設定幾個劃分點,將原陣列平均劃分為 ? 個子陣列呢?這種情況與“桶排序”非常類似, 它非常適合排序海量資料,理論上時間複雜度可以達到 ?(? + ?) 。 2. 平行計算最佳化 我們知道,分治生成的子問題是相互獨立的,因此通常可以並行解決。也就是說,分治不僅可以降低演算法 的時間複雜度,還有利於作業系統的並行最佳化。0 码力 | 388 页 | 18.82 MB | 10 月前3
Rust 程序设计语言 简体中文版 1.85.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2. 数据类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5. 使用结构体组织相关联的数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 10.1. 泛型数据类型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0 码力 | 562 页 | 3.23 MB | 25 天前3
Rust 程序设计语言简体中文版.......................................................................................... 43 3.2. 数据类型 ................................................................................................ ................................................................................ 91 5. 使用结构体组织相关联的数据 ............................................................................................ 101 5 ..................................................................................... 204 10.1. 泛型数据类型 ................................................................................................0 码力 | 600 页 | 12.99 MB | 1 年前3
共 36 条
- 1
- 2
- 3
- 4













