积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(20)Rust(20)

语言

全部中文(简体)(19)中文(繁体)(1)

格式

全部PDF文档 PDF(18)PPT文档 PPT(2)
 
本次搜索耗时 0.116 秒,为您找到相关结果约 20 个.
  • 全部
  • 后端开发
  • Rust
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Rust 异步 Runtime 的兼容层 - 施继成

    Rust 异步 Runtime 的兼容层 施继成 @ DatenLord Introduce what’s rust async runtime # Rust async runtime Analyze the reason of runtime isolation # Async runtime binding # Compatible layer 1 Create a wheel
    0 码力 | 22 页 | 957.41 KB | 1 年前
    3
  • ppt文档 新一代分布式高性能图数据库的构建 - 沈游人

    生活中无处不在的图 图分析技术分类 图查询 • 使用图数据库的查询语言进行点边搜索 图算法 • 中心性算法 • 社区算法 • 路径算法 • … 图深度学习 • 图嵌入 • 图卷积 • 图注意力网络 • 图自编码器 图查询及其应用场景 图查询 • 使用图数据库的查询语言进行点边的关联查询,可以快速完成传统数据库难以完成的 多度点边关 联 当前图的典型应用场景 路径识别 群体挖掘 AtlasGraph 架构及实现 新一代图技术应用特征简介 Takeaway AtlasGraph 架构概览 存储层 副本管理 CRAQ 图原生存储 索引 LSM-Tree 容灾保障 ( BR ) 元数据层 事务管理 MVOCC 计算层 Cypher AST 优化器 图计算 内存加速引 擎 服务接口 HTTP/RPC Spark Spark 连接器 Python UDF 执行器 索引管理 一致性存储 RAFT 分片管理 元数据 集群管理 用户权限 GNN 应用层 Atlas 图平台 Atlas Studio Atlas Client 基础 设施 Docker/K8S/VM X86/ARM - 基于 RUST 语言保证性能优势 - 分布式架构性能可线性扩展 - 针对大规模图优化的存算引擎
    0 码力 | 38 页 | 24.68 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Rust版

    我深深赞同费曼教授所言:“Knowledge isn’t free. You have to pay attention.”从这个意义上看,这本 书并非完全“免费”。为了不辜负你为本书所付出的宝贵“注意力”,我会竭尽所能,投入最大的“注意力” 来完成本书的创作。 本人自知学疏才浅,书中内容虽然已经过一段时间的打磨,但一定仍有许多错误,恳请各位老师和同学批评 指正。 本书中的代码附有可一键运行的源文件,托管于 github ”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。 2. 递归调用:对应“递”,函数调用自身,通常输入更小或更简化的参数。 3. 返回结果:对应“归”,将当前递归层级的结果返回至上一层。 观察以下代码,我们只需调用函数 recur(n) ,就可以完成 间效率上与迭代相当。这种情况被称为尾递归(tail recursion)。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 ‧ 尾递归:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无须继续执行其他 操作,因此系统无须保存上一层函数的上下文。 以计算 1 + 2 + ⋯ + ? 为例,我们可以将结果变量 res 设为函数参数,从而实现尾递归:
    0 码力 | 388 页 | 18.50 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Rust 版

    我深深赞同费曼教授所言:“Knowledge isn’t free. You have to pay attention.”从这个意义上看,这本 书并非完全“免费”。为了不辜负你为本书所付出的宝贵“注意力”,我会竭尽所能,投入最大的“注意力” 来完成本书的创作。 本人自知学疏才浅,书中内容虽然已经过一段时间的打磨,但一定仍有许多错误,恳请各位老师和同学批评 指正。 本书中的代码附有可一键运行的源文件,托管于 github ”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。 2. 递归调用:对应“递”,函数调用自身,通常输入更小或更简化的参数。 3. 返回结果:对应“归”,将当前递归层级的结果返回至上一层。 观察以下代码,我们只需调用函数 recur(n) ,就可以完成 间效率上与迭代相当。这种情况被称为尾递归(tail recursion)。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 ‧ 尾递归:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无须继续执行其他 操作,因此系统无须保存上一层函数的上下文。 以计算 1 + 2 + ⋯ + ? 为例,我们可以将结果变量 res 设为函数参数,从而实现尾递归:
    0 码力 | 387 页 | 18.51 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0 Rust版

    我深深赞同费曼教授所言:“Knowledge isn’t free. You have to pay attention.”从这个意义上看,这本 书并非完全“免费”。为了不辜负你为本书所付出的宝贵“注意力”,我会竭尽所能,投入最大的“注意力” 来完成本书的创作。本人自知学疏才浅,书中内容虽然已经过一段时间的打磨,但一定仍有许多错误,恳请 各位老师和同学批评指正。 本书中的代码附有可一键运行的源文件,托管于 github ”。 2. 归:触发“终止条件”后,程序从最深层的递归函数开始逐层返回,汇聚每一层的结果。 而从实现的角度看,递归代码主要包含三个要素。 1. 终止条件:用于决定什么时候由“递”转“归”。 2. 递归调用:对应“递”,函数调用自身,通常输入更小或更简化的参数。 3. 返回结果:对应“归”,将当前递归层级的结果返回至上一层。 观察以下代码,我们只需调用函数 recur(n) ,就可以完成 间效率上与迭代相当。这种情况被称为「尾递归 tail recursion」。 ‧ 普通递归:当函数返回到上一层级的函数后,需要继续执行代码,因此系统需要保存上一层调用的上下 文。 ‧ 尾递归:递归调用是函数返回前的最后一个操作,这意味着函数返回到上一层级后,无须继续执行其他 操作,因此系统无须保存上一层函数的上下文。 以计算 1 + 2 + ⋯ + ? 为例,我们可以将结果变量 res 设为函数参数,从而实现尾递归:
    0 码力 | 383 页 | 17.61 MB | 1 年前
    3
  • pdf文档 Rust 程序设计语言 简体中文版 1.85.0

    用的内在详细实现。我们也可以将模块和它其中的项标记为公开的,这样,外部代码就可以使 用并依赖于它们。 作为示例,让我们编写一个提供餐厅功能的库 crate。我们将定义函数的签名,但将其函数体 留空以便将注意力集中在代码的组织结构上而不是餐厅实现的细节。 在餐饮业,餐馆中会有一些地方被称之为前台(front of house),还有另外一些地方被称之为 后台(back of house)。前台是招待顾客 eat_at_restaurant 中调用 add_to_waitlist 时,使用的是相对路径。这个路径以 front_of_house 为起始,这个模块在模块树中与 eat_at_restaurant 定义在同一层级。与之等 价的文件系统路径就是 front_of_house/hosting/add_to_waitlist。以模块名开头意味着该路 径是相对路径。 137/562Rust 程序设计语言 简体中文版 {largest}"); } 示例 10-2:寻找两个数组最大值的代码 虽然代码能够执行,但是重复的代码是冗余且容易出错的,更新逻辑时我们不得不记住需要修 改多处地方的代码。 为了消除重复,我们要创建一层抽象,定义一个处理任意整型列表作为参数的函数。这个方案 使得代码更简洁,并且表现了寻找任意列表中最大值这一概念。 在示例 10-3 的程序中将寻找最大值的代码提取到了一个叫做 largest 的函数中。接着我们调
    0 码力 | 562 页 | 3.23 MB | 25 天前
    3
  • pdf文档 Hello 算法 1.2.0 繁体中文 Rust 版

    我深深認同費曼教授所言:“Knowledge isn’t free. You have to pay attention.”從這個意義上看,這本 書並非完全“免費”。為了不辜負你為本書所付出的寶貴“注意力”,我會竭盡所能,投入最大的“注意力” 來完成本書的創作。 本人自知學疏才淺,書中內容雖然已經過一段時間的打磨,但一定仍有許多錯誤,懇請各位老師與同學批評 指正。 本書中的程式碼附有可一鍵執行的原始檔,託管於 github capacity 觀察以上公式,當雜湊表容量 capacity 固定時,雜湊演算法 hash() 決定了輸出值,進而決定了鍵值對在雜 湊表中的分佈情況。 這意味著,為了降低雜湊衝突的發生機率,我們應當將注意力集中在雜湊演算法 hash() 的設計上。 6.3.1 雜湊演算法的目標 為了實現“既快又穩”的雜湊表資料結構,雜湊演算法應具備以下特點。 ‧ 確定性:對於相同的輸入,雜湊演算法應始終產生相同的輸出。這樣才能確保雜湊表是可靠的。 left subtree 左子树 左子樹 right subtree 右子树 右子樹 root node 根节点 根節點 leaf node 叶节点 葉節點 edge 边 邊 level 层 層 degree 度 度 height 高度 高度 depth 深度 深度 perfect binary tree 完美二叉树 完美二元樹 complete binary tree 完全二叉树
    0 码力 | 388 页 | 18.82 MB | 10 月前
    3
  • pdf文档 Rust 程序设计语言简体中文版

    eat_at_restaurant 中调用 add_to_waitlist ,使用的是相对路径。这个 路径以 front_of_house 为起始,这个模块在模块树中,与 eat_at_restaurant 定义在同一层 级。与之等价的文件系统路径就是 front_of_house/hosting/add_to_waitlist 。以模块名开头 意味着该路径是相对路径。 选择使用相对路径还是绝对路径,要取决于你的项目,也取决于你是更倾向于将项的定义代码 largest); } 示例 10-2:寻找 两个 数字列表最大值的代码 虽然代码能够执行,但是重复的代码是冗余且容易出错的,更新逻辑时我们不得不记住需要修 改多处地方的代码。 为了消除重复,我们要创建一层抽象,定义一个处理任意整型列表作为参数的函数。这个方案 使得代码更简洁,并且表现了寻找任意列表中最大值这一概念。 在示例 10-3 的程序中将寻找最大值的代码提取到了一个叫做 largest 的函数中。接着我们调 中并打印出来 首先使用 use 语句来将 std::env 模块引入作用域以便可以使用它的 args 函数。注意 std::env::args 函数被嵌套进了两层模块中。正如 第七章 讲到的,当所需函数嵌套了多于一 层模块时,通常将父模块引入作用域,而不是其自身。这便于我们利用 std::env 中的其他函 数。这比增加了 use std::env::args; 后仅仅使用 args
    0 码力 | 600 页 | 12.99 MB | 1 年前
    3
  • ppt文档 Rust分布式账务系统 - 胡宇

    ● 事务层与账户层分 离 ● 独立水平扩展 ● CQRS ● Event Sourcing ● 针对读场景,写场 景分别优化 ● 稳定的底层 API ● 灵活的顶层 API ● 树状结构 ● 聚合查询 ● 正确性:内存安全,线程安全 ● 可靠性: Raft 共识算法 raft-rs ● 高性能:关键路径无锁单线程 顶层架构 ● Gateway 路由层 ○ 业务 Marker 事务层 ○ 使用业务 id 进行路由 ○ 执行转账计划 ○ 分发账户变动请求 ● Auticuro 账户层 ○ 使用账户 id 进行分区 ○ 执行账户变动请求 ○ 更新账户余额 分布式账务系统 性能展示 8 vCPUs * 5 节点 SSD 磁盘 当 TPS = 10K 时, 延迟 P99 < 20ms 分布式账务系统 高吞吐,超低延迟 账户层: Auticuro Auticuro 分布式账务系统 账户层: Auticuro ● 1. 接受转账请求,转换成 events ○ Tokio + Tonic 分布式账务系统 1 2 3 4 ● 1. 接受转账请求,转换成 events ● 2. 将 events 送入 Raft 共识,等待 events 被多数节点保存 ○ 共识:基于 raft-rs 的可靠消息队 列 ○ 存储: Rocksdb
    0 码力 | 27 页 | 12.60 MB | 1 年前
    3
  • pdf文档 使用Rust与ClickHouse构建高效可靠的日志系统

    • 存储(ClickHouse) 整体架构 • 协议层 • 处理层 • 计算层 • 存储层 系统实现 协议层 • 支持协议 • Loki • 写入 • Json/ProtoBuf • 查询 • LogQL • Log Queries • Metric Queries • OpenTSDB • 统计/计算 协议层 • Parser • 手写 • 为什么? • Lo 测试 • Fuzz testing 处理层 • Processor • 初始化 • 静态/动态 • 执行 • 读/写 • 结构 • prediccate • process(&self, streams: Streams) -> Streams • 类型 • 修改原始数据 • 抽取原始数据字段 • Json/LogFmt 计算层 • 大部分计算交给ClickHouse • Vector matching • 匹配两个Vector 存储层 • WAL • 移植LevelDB的 WAL • 定长的 Block • Batch 写入 ClickHouse • Flush Worker • 异步任务定时刷新 WAL • 清理策略 • Schema同步 • 转换SQL 存储层 • ClickHouse • 使用Array来保存 Labels
    0 码力 | 19 页 | 2.66 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
继成2023RustChinaConf异步兼容游人RustCCAtlasGraphHello算法1.1Rust1.2简体中文简体中文1.0程序设计程序设计语言文版中文版简体中文版1.85繁体繁体中文胡宇rust分布布式分布式账务系统ClickHouse
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩