 云原生中的数据科学KubeConAsia2018Final0 码力 | 47 页 | 14.91 MB | 1 年前3 云原生中的数据科学KubeConAsia2018Final0 码力 | 47 页 | 14.91 MB | 1 年前3
 构建统一的云原生应用 可观测性数据平台reserved. 构建统一的云原生应用 可观测性数据平台 DeepFlow在混合云中的实践总结 向阳@云杉网络 2022-04-09 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing 统一的可观测性数据平台 telegraf 看云网更清晰 Simplify the growing complexity. 挑战:数据孤岛、资源开销 数据 孤岛 资源消耗 telegraf 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ① Trace与「非Request scope」的Metrics 例如:响应Request A的实例在一段时间内做了多少次GC? ① 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ② 应用、系统、网络的Metrics之间 例如:某个Servi0 码力 | 35 页 | 6.75 MB | 1 年前3 构建统一的云原生应用 可观测性数据平台reserved. 构建统一的云原生应用 可观测性数据平台 DeepFlow在混合云中的实践总结 向阳@云杉网络 2022-04-09 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing 统一的可观测性数据平台 telegraf 看云网更清晰 Simplify the growing complexity. 挑战:数据孤岛、资源开销 数据 孤岛 资源消耗 telegraf 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ① Trace与「非Request scope」的Metrics 例如:响应Request A的实例在一段时间内做了多少次GC? ① 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ② 应用、系统、网络的Metrics之间 例如:某个Servi0 码力 | 35 页 | 6.75 MB | 1 年前3
 云原生图数据库解谜、容器化实践与 Serverless 应用实操云原⽣图数据库解谜、容器化实 践与 Serverless 应⽤实操 古思为 ⽅阗 Graph DB on K8s Demystified and its Serverless applicaiton in actions. DEVELOPER ADVOCATE @ MAINTAINER OF KCD China 2021 Nov. 6th @Shanghai 古思为 wey-gu ⻘云科技研发⼯程师 Overview 了解 K8s 上的 Serverless 计算平台搭建实践:OpenFunction K8s 上的图数据库基于 KubeBuilder 的 Operator 实现,解谜图数据库的知识与应⽤ 上⼿ K8s 上的云原⽣图数据库、从零到⼀构建 Serverless 架构的智能问答助⼿ siwei.io/talks/2021-KCD laminar.fun/talks/2021-KCD com/OpenFunction/samples 图数据库简介 什么是图? 什么是图数据库? 为什么我们需要⼀个专⻔的数据库? 什么是图? "以图结构、图语义来⽤点、边、属性来查询、表示存 储数据的数据库 wikipedia.org/wiki/graph_database 了解更多关于 什么是图数据库 什么是图数据库 为什么需要图数据库? 传统数据库 图数据库 图模型的结构 图语义的查询 性能0 码力 | 47 页 | 29.72 MB | 1 年前3 云原生图数据库解谜、容器化实践与 Serverless 应用实操云原⽣图数据库解谜、容器化实 践与 Serverless 应⽤实操 古思为 ⽅阗 Graph DB on K8s Demystified and its Serverless applicaiton in actions. DEVELOPER ADVOCATE @ MAINTAINER OF KCD China 2021 Nov. 6th @Shanghai 古思为 wey-gu ⻘云科技研发⼯程师 Overview 了解 K8s 上的 Serverless 计算平台搭建实践:OpenFunction K8s 上的图数据库基于 KubeBuilder 的 Operator 实现,解谜图数据库的知识与应⽤ 上⼿ K8s 上的云原⽣图数据库、从零到⼀构建 Serverless 架构的智能问答助⼿ siwei.io/talks/2021-KCD laminar.fun/talks/2021-KCD com/OpenFunction/samples 图数据库简介 什么是图? 什么是图数据库? 为什么我们需要⼀个专⻔的数据库? 什么是图? "以图结构、图语义来⽤点、边、属性来查询、表示存 储数据的数据库 wikipedia.org/wiki/graph_database 了解更多关于 什么是图数据库 什么是图数据库 为什么需要图数据库? 传统数据库 图数据库 图模型的结构 图语义的查询 性能0 码力 | 47 页 | 29.72 MB | 1 年前3
 Volcano加速金融行业大数据分析平台云原生化改造的应用实践Volcano加速金融行业大数据分析平台 云原生化改造的应用实践 汪 洋, 华为云 Volcano 社区核心贡献者 大数据平台云原生面临的挑战 传统大数据平台云原生化改造成为必然趋势 大数据分析、人工智能等批量计算场景深度应用于金融场景 作业管理缺失 • Pod级别调度,无法感知上层应用 • 缺少作业概念、缺少完善的生命周期的管理 • 缺少任务依赖、作业依赖支持 调度策略局限 计算密集,资源波动大,需要高级调度能力 资源规划复用、异构计算支持不足 • 缺少队列概念 • 不支持集群资源的动态规划以及资源复用 • 对异构资源支持不足 传统服务 大数据 人工智能 云原生大数据平台 大数据、AI等批量计算场景 云原生化面临的挑战 Volcano 架构 项目概况: • 业界首个云原生批量计算平台 • 2019年6月开源,2020年进入CNCF,目前是CNCF孵化级项目 Plugins on demand reclaim Re-construct JobInfo in Cache by PodGroup Job JobSpec 用户案例:荷兰ING银行大数据平台云原生化改造 • Platform Entry-point • Project Management Data Science in a box (Advanced analytics0 码力 | 18 页 | 1.82 MB | 1 年前3 Volcano加速金融行业大数据分析平台云原生化改造的应用实践Volcano加速金融行业大数据分析平台 云原生化改造的应用实践 汪 洋, 华为云 Volcano 社区核心贡献者 大数据平台云原生面临的挑战 传统大数据平台云原生化改造成为必然趋势 大数据分析、人工智能等批量计算场景深度应用于金融场景 作业管理缺失 • Pod级别调度,无法感知上层应用 • 缺少作业概念、缺少完善的生命周期的管理 • 缺少任务依赖、作业依赖支持 调度策略局限 计算密集,资源波动大,需要高级调度能力 资源规划复用、异构计算支持不足 • 缺少队列概念 • 不支持集群资源的动态规划以及资源复用 • 对异构资源支持不足 传统服务 大数据 人工智能 云原生大数据平台 大数据、AI等批量计算场景 云原生化面临的挑战 Volcano 架构 项目概况: • 业界首个云原生批量计算平台 • 2019年6月开源,2020年进入CNCF,目前是CNCF孵化级项目 Plugins on demand reclaim Re-construct JobInfo in Cache by PodGroup Job JobSpec 用户案例:荷兰ING银行大数据平台云原生化改造 • Platform Entry-point • Project Management Data Science in a box (Advanced analytics0 码力 | 18 页 | 1.82 MB | 1 年前3
 12-从数据库中间件到云原生——Apache ShardingSphere 架构演进-秦金卫从【数据库中间件】到【云原生】 ——Apache ShardingSphere 架构演进 Apache Dubbo/ShardingSphere PMC 秦金卫(kimmking) 2020-12-04 20:00 云 原 生 学 院 # 1 2 目录 1.数据库框架:从数据库的性能与容量到数据库框架技术的产生 2.数据库中间件:从框架技术到分布式的数据库中间件技术 3.分布式数据库:从数据库中间件技术发展到分布式数据库 分布式数据库:从数据库中间件技术发展到分布式数据库 4.数据库网格:数据库与微服务、云原生的发展关系 5.数据库解决方案:如何基于 ShardingSphere 生态创建数据库解决方案 1.数据库框架 1.数据库框架 摩尔定律失效 分布式崛起 1.数据库框架 随着数据量的增大,读写并发的增加,系统可用性要求的提升,单机 MySQL面临: 1、容量有限,难以扩容 2、读写压力,QPS过大,特别是分析类需求会影响到业务事务 3、可用性不足,宕机问题 1.数据库框架 1.数据库框架 计算机领域的任何问题都可以通过增加一个中间层来解决。 数据库框架技术:在业务侧增强数据 库的能力。 直接在业务代码使用。 支持常见的数据库和JDBC。 轻量级,不需要额外的资源和机器。 1.数据库框架 1、改造对业务系统具有较大侵入性; 2、对于复杂的SQL,可能不支持; 3、对于跨库和跨分片的数据,需要额外机制保障一致性;0 码力 | 23 页 | 1.91 MB | 6 月前3 12-从数据库中间件到云原生——Apache ShardingSphere 架构演进-秦金卫从【数据库中间件】到【云原生】 ——Apache ShardingSphere 架构演进 Apache Dubbo/ShardingSphere PMC 秦金卫(kimmking) 2020-12-04 20:00 云 原 生 学 院 # 1 2 目录 1.数据库框架:从数据库的性能与容量到数据库框架技术的产生 2.数据库中间件:从框架技术到分布式的数据库中间件技术 3.分布式数据库:从数据库中间件技术发展到分布式数据库 分布式数据库:从数据库中间件技术发展到分布式数据库 4.数据库网格:数据库与微服务、云原生的发展关系 5.数据库解决方案:如何基于 ShardingSphere 生态创建数据库解决方案 1.数据库框架 1.数据库框架 摩尔定律失效 分布式崛起 1.数据库框架 随着数据量的增大,读写并发的增加,系统可用性要求的提升,单机 MySQL面临: 1、容量有限,难以扩容 2、读写压力,QPS过大,特别是分析类需求会影响到业务事务 3、可用性不足,宕机问题 1.数据库框架 1.数据库框架 计算机领域的任何问题都可以通过增加一个中间层来解决。 数据库框架技术:在业务侧增强数据 库的能力。 直接在业务代码使用。 支持常见的数据库和JDBC。 轻量级,不需要额外的资源和机器。 1.数据库框架 1、改造对业务系统具有较大侵入性; 2、对于复杂的SQL,可能不支持; 3、对于跨库和跨分片的数据,需要额外机制保障一致性;0 码力 | 23 页 | 1.91 MB | 6 月前3
 27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊自动化解决用户使用体验问题,计算量属于窄带范畴, 所以计算算力重点在于云端,云端计算体系架构成熟, 成本较低,在业务上本地的设备根据模式信号反馈一些 动作,比如下雨关窗帘,是自动化范畴,上传云端的数 据都是属性数据,比如谁什么时候干了什么,后续云端 根据个人喜好数据为用户提供比如按照个人喜好调节温 度、或者提送广告内容等 自动化特征 智能家居 智能办公室 智能信号灯... 远端控制 云端分析系统 设备端 (现场)边缘计算BOX 和硬件的要求,形成 一个通用计算平台, 更普遍的为客户场景 赋能。 • 一切围绕如何将算力 输送到业务场景为中 心思想,构建技术体 系。 高级能力-业务双引擎循环驱动-业务数据化、数据业务化 互联网业务、万物互联业务等等造就了海量数据,而海量数据应该也必须能够提炼出价值为业务反向赋能,形成正向业务价值循环 云原生平台(PaaS+Caas+IaaS) 业务系统连接一组人,或者说企业业务实际能力提供者,通过双中台可 内这类 伪低代码产品,靠着模板走量批发的模式。客户买的是人工,不是技术 • 低代码平台与企业技术 栈的融合能力成为一个 重要的考验指标 • 有的企业系统已经运行 了几十年,拥有自己的 UI 体系、数据库体系和 中台体系,完全更改是 不现实的,低代码平台 要做的是与这么多技术 融合,帮助企业更好地 改进。 • 降本增效是最初级的成 果,如果能够深入企业 业务当中,低代码平台 可以带来的东西会更多。0 码力 | 20 页 | 5.17 MB | 6 月前3 27-云原生赋能 AIoT 和边缘计算、云形态以及成熟度模型之道-高磊自动化解决用户使用体验问题,计算量属于窄带范畴, 所以计算算力重点在于云端,云端计算体系架构成熟, 成本较低,在业务上本地的设备根据模式信号反馈一些 动作,比如下雨关窗帘,是自动化范畴,上传云端的数 据都是属性数据,比如谁什么时候干了什么,后续云端 根据个人喜好数据为用户提供比如按照个人喜好调节温 度、或者提送广告内容等 自动化特征 智能家居 智能办公室 智能信号灯... 远端控制 云端分析系统 设备端 (现场)边缘计算BOX 和硬件的要求,形成 一个通用计算平台, 更普遍的为客户场景 赋能。 • 一切围绕如何将算力 输送到业务场景为中 心思想,构建技术体 系。 高级能力-业务双引擎循环驱动-业务数据化、数据业务化 互联网业务、万物互联业务等等造就了海量数据,而海量数据应该也必须能够提炼出价值为业务反向赋能,形成正向业务价值循环 云原生平台(PaaS+Caas+IaaS) 业务系统连接一组人,或者说企业业务实际能力提供者,通过双中台可 内这类 伪低代码产品,靠着模板走量批发的模式。客户买的是人工,不是技术 • 低代码平台与企业技术 栈的融合能力成为一个 重要的考验指标 • 有的企业系统已经运行 了几十年,拥有自己的 UI 体系、数据库体系和 中台体系,完全更改是 不现实的,低代码平台 要做的是与这么多技术 融合,帮助企业更好地 改进。 • 降本增效是最初级的成 果,如果能够深入企业 业务当中,低代码平台 可以带来的东西会更多。0 码力 | 20 页 | 5.17 MB | 6 月前3
 云原生安全威胁分析与能力建设白皮书(来源:中国联通研究院).......................................................................................34 2.6.2 敏感数据泄露攻击................................................................................34 2.6.3 身份认证攻击 千企业数字化转型换挡提速,企业对云计算的使用效能提出新的需求。云原生以 其独特的技术特点,很好地契合了云计算发展的本质需求,正在成为驱动云计算 质变的技术内核。 云原生作为云计算深入发展的产物,已经开始在 5G、人工智能、大数据等 各个技术领域得到广泛应用。中国联通研究院一直从事云原生及其安全技术的研 究,致力于推动云原生在通信行业落地实践,全面落实好“大安全”主责主业, 以实际行动践行“国家队、主力军、排头兵”的责任担当。2022 时代,云原生技术日趋成熟,并因大语言模型的推 动助力朝着云计算 3.0 智能时代迈进的背景下,分析云原生安全的发展情况和面 临的威胁,并研究云原生安全能力,能够为企业整体的云安全防护体系建立提供 帮助,从而保障企业业务和数据更安全的在云上运转。 1.1 云原生及云原生安全 过去十年,企业数字化转型加速推进,相继经历了服务器、云化到云原生化 三个阶段。在云化阶段,云主机是云计算的核心负载之一,云主机安全是云安全0 码力 | 72 页 | 2.44 MB | 1 年前3 云原生安全威胁分析与能力建设白皮书(来源:中国联通研究院).......................................................................................34 2.6.2 敏感数据泄露攻击................................................................................34 2.6.3 身份认证攻击 千企业数字化转型换挡提速,企业对云计算的使用效能提出新的需求。云原生以 其独特的技术特点,很好地契合了云计算发展的本质需求,正在成为驱动云计算 质变的技术内核。 云原生作为云计算深入发展的产物,已经开始在 5G、人工智能、大数据等 各个技术领域得到广泛应用。中国联通研究院一直从事云原生及其安全技术的研 究,致力于推动云原生在通信行业落地实践,全面落实好“大安全”主责主业, 以实际行动践行“国家队、主力军、排头兵”的责任担当。2022 时代,云原生技术日趋成熟,并因大语言模型的推 动助力朝着云计算 3.0 智能时代迈进的背景下,分析云原生安全的发展情况和面 临的威胁,并研究云原生安全能力,能够为企业整体的云安全防护体系建立提供 帮助,从而保障企业业务和数据更安全的在云上运转。 1.1 云原生及云原生安全 过去十年,企业数字化转型加速推进,相继经历了服务器、云化到云原生化 三个阶段。在云化阶段,云主机是云计算的核心负载之一,云主机安全是云安全0 码力 | 72 页 | 2.44 MB | 1 年前3
 consul 命令行代理上设置此选项。默认情况下,-adverti e通告地址。但是,在某些情况下,所有数据中心的所有成员都不能位于同一物理或虚拟网络上,尤 是混合云和私有数据中心的混合设置。此标志使服务器节点通过公共网络为WAN进行闲聊,同时使 专用VLAN互相闲聊及其客户端代理,并且如果远程数据中心是远程数据中心,则允许从远程数据中 访问此地址时访问客户端代理。配置了translate_wan_addrs。在Consul 此标志用于控制服务器是否处于“引导”模式。重要的是,在此模式下,每个数据中 只能运行一台服务器。从技术上讲,允许自举模式的服务器作为Raft领导者自行选举。重要的是只有 个节点处于这种模式; 否则,无法保证一致性,因为多个节点能够自我选择。在引导群集后,建议不 使用此标志。 ● -bootstrap-expect:此标志提供数据中心中预期的服务器数。不应提供此值,或者该值必须与群 中的其他服务器 置文件的格式。将此选项设置为“json”或“hcl”会强制Consul解释具有或不具有扩展名的任何文 ,以便以该格式进行解释。 原文链接:consul 命令行 ● data-dir:此标志为代理程序存储状态提供数据目录。这是所有代理商都需要的。该目录在重新启 后应该是持久的。这对于在服务器模式下运行的代理尤其重要,因为它们必须能够持久化群集状态。 外,该目录必须支持使用文件系统锁定,这意味着某些类型的已安装文件夹(例如VirtualBox共享文0 码力 | 5 页 | 346.62 KB | 1 年前3 consul 命令行代理上设置此选项。默认情况下,-adverti e通告地址。但是,在某些情况下,所有数据中心的所有成员都不能位于同一物理或虚拟网络上,尤 是混合云和私有数据中心的混合设置。此标志使服务器节点通过公共网络为WAN进行闲聊,同时使 专用VLAN互相闲聊及其客户端代理,并且如果远程数据中心是远程数据中心,则允许从远程数据中 访问此地址时访问客户端代理。配置了translate_wan_addrs。在Consul 此标志用于控制服务器是否处于“引导”模式。重要的是,在此模式下,每个数据中 只能运行一台服务器。从技术上讲,允许自举模式的服务器作为Raft领导者自行选举。重要的是只有 个节点处于这种模式; 否则,无法保证一致性,因为多个节点能够自我选择。在引导群集后,建议不 使用此标志。 ● -bootstrap-expect:此标志提供数据中心中预期的服务器数。不应提供此值,或者该值必须与群 中的其他服务器 置文件的格式。将此选项设置为“json”或“hcl”会强制Consul解释具有或不具有扩展名的任何文 ,以便以该格式进行解释。 原文链接:consul 命令行 ● data-dir:此标志为代理程序存储状态提供数据目录。这是所有代理商都需要的。该目录在重新启 后应该是持久的。这对于在服务器模式下运行的代理尤其重要,因为它们必须能够持久化群集状态。 外,该目录必须支持使用文件系统锁定,这意味着某些类型的已安装文件夹(例如VirtualBox共享文0 码力 | 5 页 | 346.62 KB | 1 年前3
 云原生微服务最佳实践Ingress(Envoy) 云原⽣⽹关 服务治理 控制面 微服务引擎(Micro Service Engine,简称 MSE)是一个面向业界主流开源微服务生态的一站式微服务平台 高性能 高可用 高集成 安全 竞争力 三位一体: 阿里微服务 DNS 开源最佳实践 + 产品灵活组合 & 开箱即用 + 经过阿里双十一考验的默认高可用能力 服务治理最佳实践 • 服务元信息 运行态Ops 开发态Dev 安全态Sec RPC 数据中心 Dubbo Gray Dubbo 基线版本 RPC RPC 微服务中心 app pos web MSE 云原生网关 认证鉴权服务 primweb web 订单中心 促销中心 商品中心 库存中心 渠道中心 用户中心 营销中心 会员中心 日志服务 安全 全链路监控 web服务 ES 云数据库 Rredis 版 RDS 云数据库 POLARDB 紧急预 案 提前预 案 白名单 日志级别 、采样率 超时、重试 流量调度 动态数据源 故障自动切库 DB大促预建联 密码定期修改 流量控 制 线程控 制 微服务生态 前端生态 Spring Sentinel 高可用生态 Dubbo Midway Switch 数据库生态 TDDL 服务鉴权 Pre-plan MSE(Nacos) 服务网格最佳实践0 码力 | 20 页 | 6.76 MB | 1 年前3 云原生微服务最佳实践Ingress(Envoy) 云原⽣⽹关 服务治理 控制面 微服务引擎(Micro Service Engine,简称 MSE)是一个面向业界主流开源微服务生态的一站式微服务平台 高性能 高可用 高集成 安全 竞争力 三位一体: 阿里微服务 DNS 开源最佳实践 + 产品灵活组合 & 开箱即用 + 经过阿里双十一考验的默认高可用能力 服务治理最佳实践 • 服务元信息 运行态Ops 开发态Dev 安全态Sec RPC 数据中心 Dubbo Gray Dubbo 基线版本 RPC RPC 微服务中心 app pos web MSE 云原生网关 认证鉴权服务 primweb web 订单中心 促销中心 商品中心 库存中心 渠道中心 用户中心 营销中心 会员中心 日志服务 安全 全链路监控 web服务 ES 云数据库 Rredis 版 RDS 云数据库 POLARDB 紧急预 案 提前预 案 白名单 日志级别 、采样率 超时、重试 流量调度 动态数据源 故障自动切库 DB大促预建联 密码定期修改 流量控 制 线程控 制 微服务生态 前端生态 Spring Sentinel 高可用生态 Dubbo Midway Switch 数据库生态 TDDL 服务鉴权 Pre-plan MSE(Nacos) 服务网格最佳实践0 码力 | 20 页 | 6.76 MB | 1 年前3
 22-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊1、信息管理 MIS、ERP… 2、流程规范 BPM、EAI… 3、管理监控 BAM、BI 4、协作平台 OA、CRM 5、数据化运营 SEM、O2O 6、互联网平台 AI、IoT 数据化运营 大数据 智能化管控 互联网平台 跨企业合作 稳态IT:安全、稳定、性能 敏态IT:敏捷、弹性、灵活 各行业IT应用系统不断丰富与创新 总部 机关 内部员工 分支 HRM …… BPM MES 稳态IT WEB APP 移动用户 采购 平台 互联网 平台 数字 营销 敏态IT 互联网/物联网应用 创新应用 PC用户 物联网 物联终端 互联网、 大数据 AI、 IoT 数字化转型  应用价值提升  应用数量增长  应用类型丰富  应用需求多变 企业从信息化到数字化的转型带来大量的应用需求 软件组件 运行环境 部署平台 企业管理层 业务架构师或者PM 产品|数据|应用|技术架构师 架构咨询团队 企业自己决定 云原生平台+架构咨询团队 数据平台 DevOps 微服务 PAAS 容器云 客户群体与规模 电信 制造 金融 服务业 政府 互联网 350.2亿 云原生采用规模占比与市场总规模 58% 11% 10% 8% 5% 5% 数据来源:中国云原生产业联盟20190 码力 | 42 页 | 11.17 MB | 6 月前3 22-云原生的缘起、云原生底座、PaaS 以及 Service Mesh 等之道-高磊1、信息管理 MIS、ERP… 2、流程规范 BPM、EAI… 3、管理监控 BAM、BI 4、协作平台 OA、CRM 5、数据化运营 SEM、O2O 6、互联网平台 AI、IoT 数据化运营 大数据 智能化管控 互联网平台 跨企业合作 稳态IT:安全、稳定、性能 敏态IT:敏捷、弹性、灵活 各行业IT应用系统不断丰富与创新 总部 机关 内部员工 分支 HRM …… BPM MES 稳态IT WEB APP 移动用户 采购 平台 互联网 平台 数字 营销 敏态IT 互联网/物联网应用 创新应用 PC用户 物联网 物联终端 互联网、 大数据 AI、 IoT 数字化转型  应用价值提升  应用数量增长  应用类型丰富  应用需求多变 企业从信息化到数字化的转型带来大量的应用需求 软件组件 运行环境 部署平台 企业管理层 业务架构师或者PM 产品|数据|应用|技术架构师 架构咨询团队 企业自己决定 云原生平台+架构咨询团队 数据平台 DevOps 微服务 PAAS 容器云 客户群体与规模 电信 制造 金融 服务业 政府 互联网 350.2亿 云原生采用规模占比与市场总规模 58% 11% 10% 8% 5% 5% 数据来源:中国云原生产业联盟20190 码力 | 42 页 | 11.17 MB | 6 月前3
共 25 条
- 1
- 2
- 3













