Volcano加速金融行业大数据分析平台云原生化改造的应用实践Volcano加速金融行业大数据分析平台 云原生化改造的应用实践 汪 洋, 华为云 Volcano 社区核心贡献者 大数据平台云原生面临的挑战 传统大数据平台云原生化改造成为必然趋势 大数据分析、人工智能等批量计算场景深度应用于金融场景 作业管理缺失 • Pod级别调度,无法感知上层应用 • 缺少作业概念、缺少完善的生命周期的管理 • 缺少任务依赖、作业依赖支持 调度策略局限 计算密集,资源波动大,需要高级调度能力 资源规划复用、异构计算支持不足 • 缺少队列概念 • 不支持集群资源的动态规划以及资源复用 • 对异构资源支持不足 传统服务 大数据 人工智能 云原生大数据平台 大数据、AI等批量计算场景 云原生化面临的挑战 Volcano 架构 项目概况: • 业界首个云原生批量计算平台 • 2019年6月开源,2020年进入CNCF,目前是CNCF孵化级项目 Plugins on demand reclaim Re-construct JobInfo in Cache by PodGroup Job JobSpec 用户案例:荷兰ING银行大数据平台云原生化改造 • Platform Entry-point • Project Management Data Science in a box (Advanced analytics0 码力 | 18 页 | 1.82 MB | 1 年前3
云原生中的数据科学KubeConAsia2018Final0 码力 | 47 页 | 14.91 MB | 1 年前3
云原生安全威胁分析与能力建设白皮书(来源:中国联通研究院)云原生安全威胁分析与 能力建设白皮书 中国联通研究院 中国联通网络安全研究院 下一代互联网宽带业务应用国家工程研究中心 2023 年 11 月 版权声明 本报告版权属于中国联合网络通信有限公司研究院,并受法 律保护。转载、摘编或利用其他方式使用本报告文字或者观点的, 应注明“来源:中国联通研究院”。违反上述声明者,本院将追 究其相关法律责任。 云原生安全威胁分析与能力建设白皮书 二、云原生关键技术威胁全景..............................................................................19 2.1 云原生安全威胁分析...................................................................................19 2.2 路径 1:镜像攻击 拒绝服务攻击........................................................................................25 云原生安全威胁分析与能力建设白皮书 2 2.3.4 容器网络攻击..........................................................................0 码力 | 72 页 | 2.44 MB | 1 年前3
构建统一的云原生应用 可观测性数据平台reserved. 构建统一的云原生应用 可观测性数据平台 DeepFlow在混合云中的实践总结 向阳@云杉网络 2022-04-09 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing 统一的可观测性数据平台 telegraf 看云网更清晰 Simplify the growing complexity. 挑战:数据孤岛、资源开销 数据 孤岛 资源消耗 telegraf 1. 可观测性数据平台的挑战 2. 解决数据孤岛:AutoTagging 3. 降低资源开销:MultistageCodec 4. 统一数据平台的落地思路及案例 构建统一的云原生应用可观测性数据平台 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ① Trace与「非Request scope」的Metrics 例如:响应Request A的实例在一段时间内做了多少次GC? ① 看云网更清晰 Simplify the growing complexity. 数据打通并不简单 ② 应用、系统、网络的Metrics之间 例如:某个Servi0 码力 | 35 页 | 6.75 MB | 1 年前3
云原生图数据库解谜、容器化实践与 Serverless 应用实操云原⽣图数据库解谜、容器化实 践与 Serverless 应⽤实操 古思为 ⽅阗 Graph DB on K8s Demystified and its Serverless applicaiton in actions. DEVELOPER ADVOCATE @ MAINTAINER OF KCD China 2021 Nov. 6th @Shanghai 古思为 wey-gu ⻘云科技研发⼯程师 Overview 了解 K8s 上的 Serverless 计算平台搭建实践:OpenFunction K8s 上的图数据库基于 KubeBuilder 的 Operator 实现,解谜图数据库的知识与应⽤ 上⼿ K8s 上的云原⽣图数据库、从零到⼀构建 Serverless 架构的智能问答助⼿ siwei.io/talks/2021-KCD laminar.fun/talks/2021-KCD com/OpenFunction/samples 图数据库简介 什么是图? 什么是图数据库? 为什么我们需要⼀个专⻔的数据库? 什么是图? "以图结构、图语义来⽤点、边、属性来查询、表示存 储数据的数据库 wikipedia.org/wiki/graph_database 了解更多关于 什么是图数据库 什么是图数据库 为什么需要图数据库? 传统数据库 图数据库 图模型的结构 图语义的查询 性能0 码力 | 47 页 | 29.72 MB | 1 年前3
12-从数据库中间件到云原生——Apache ShardingSphere 架构演进-秦金卫从【数据库中间件】到【云原生】 ——Apache ShardingSphere 架构演进 Apache Dubbo/ShardingSphere PMC 秦金卫(kimmking) 2020-12-04 20:00 云 原 生 学 院 # 1 2 目录 1.数据库框架:从数据库的性能与容量到数据库框架技术的产生 2.数据库中间件:从框架技术到分布式的数据库中间件技术 3.分布式数据库:从数据库中间件技术发展到分布式数据库 分布式数据库:从数据库中间件技术发展到分布式数据库 4.数据库网格:数据库与微服务、云原生的发展关系 5.数据库解决方案:如何基于 ShardingSphere 生态创建数据库解决方案 1.数据库框架 1.数据库框架 摩尔定律失效 分布式崛起 1.数据库框架 随着数据量的增大,读写并发的增加,系统可用性要求的提升,单机 MySQL面临: 1、容量有限,难以扩容 2、读写压力,QPS过大,特别是分析类需求会影响到业务事务 2、读写压力,QPS过大,特别是分析类需求会影响到业务事务 3、可用性不足,宕机问题 1.数据库框架 1.数据库框架 计算机领域的任何问题都可以通过增加一个中间层来解决。 数据库框架技术:在业务侧增强数据 库的能力。 直接在业务代码使用。 支持常见的数据库和JDBC。 轻量级,不需要额外的资源和机器。 1.数据库框架 1、改造对业务系统具有较大侵入性; 2、对于复杂的SQL,可能不支持; 3、0 码力 | 23 页 | 1.91 MB | 6 月前3
24-云原生中间件之道-高磊信任 (Istio零信任、Calico零信任、Cilium零信任、WorkLoad鉴权、WorkLoad 间授权等)、DevSecOps(安全左右移等等,比如代码或者镜像扫描)、 RASP应用安全、数据安全、态势感知与风险隔离 由于云原生托管的应用是碎片化的,环境变化也是碎片化的,而且其业务类型越来越多,比如已经延展到边 缘计算盒子,此时攻击面被放大,在云原生环境下安全是一个核心价值,需要立体纵深式的安全保障。 程序安全测试) 黑盒测试,通过模拟业务流量发起请求,进行模糊测试,比如故障注入 或者混沌测试 语言无关性,很高的精确度。 难以覆盖复杂的交互场景,测试过程对业务造成 较大的干扰,会产生大量的报错和脏数据,所以 建议在业务低峰时进行。 IAST(交互式应用程序 安全测试) 结合了上面两种的优点并克服其缺点,将SAST和DAST相结合,通过插桩 等手段在运行时进行污点跟踪,进而精准的发现问题。是DevSecOps的一 中就可以完成安全扫描,不会像DAST一样导致业 务报警进而干扰测试,同时由于污点跟踪测试模 式,IAST可以像SAST一样精准的发现问题点 SCA(软件成分分析) 有大量的重复组件或者三方库的依赖,导致安全漏洞被传递或者扩散, SCA就是解决此类问题的办法,通过自动化分析组件版本并与漏洞库相 比较,快速发现问题组件,借助积累的供应链资产,可以在快速定位的 同时,推动业务快速修复。 安全左移的一种,在上线前发现依赖组件的安全0 码力 | 22 页 | 4.39 MB | 6 月前3
基于Consul的多Beats接入管控与多ES搜索编排如何提供方便便捷的性能分析 调优能力 … 4 多Beats/Logstash接入 管控 提供多产品接入管理,多beats标准 化、界面化、自动化的日志接入方案 5 案例:1000+业务10000+台 主机如何快速实现日志接入? 业务规模 1000+业务、 10000+业务主机、每天百T日志增量 日志需求 收集业务日志文件用于故障分析与告警监控 收集主机性能数据做容量分析 日志热数据保存七天 历史数据冷备一个月 历史数据冷备一个月 其他诉求 日志上报不能影响核心业务 数据上报延时可感知 准备ES 安装Filebeat 编写Filebeat配置文件 测试并下发配置 全网重启filebeat 检测数据是否上报 传统Beats接入流程 配置更改 现网配置是否全部一致? 日志上报是否有延时? Filebeat是否资源消耗过多? Filebeat异常退出如 何处理? 如何做上报性能调优? Agent-N Agent-1 Agent-N 数据流 配置监听 Agent注册 配置下发 Web-UI Api-server1 HostGroup HostGroup MasterCluster Opsd Monitord Syncd … … 腾讯云产品 … Docker 云内网 ES 7 数据模型 Kafka ES HostGroup Auth0 码力 | 23 页 | 6.65 MB | 1 年前3
中国移动磐舟DevSecOps平台云原生安全实践安全工具链 国产化 双平面调度 敏捷开 发过程 统一代 码仓库 依赖制 品仓库 统一 镜像库 云原生 验证环境 磐基 生产运行 核心价值 核心能力 灵活的低代码能力 实现页面组件、数据组件、功能组件的快 速编排,一线人员也能自助开发功能 双模敏态管理 以敏捷研发为引导,融合瀑布式管理需求, 形成普适、灵活的研发过程管理能力。 多用途制品库 兼容市面绝大多数开发语言制品,提供公 OPS RUN TIME 上线即安全(安全左移)+ 自适应安全(持续监控&响应) SEC 安全需求 业务需求进来以后从五个维度对业务需求进行安全分析 威胁分析模型 威胁资源库 安全需求基线 威胁情报库 病例库 安全开发-安全需求分析 安全需求分析通过将安全策略左移至软件开发生命周期的初始阶段,着重在需求设计环节确定关键安全要求,旨在降低风险暴露 并增强产品安全质量。安全团队针对企业内部的 善威胁建模知识库,持续优化和维护内部安全需求知识库以适应不断变化的安全挑战。 ①需求分析阶段,分析业务需求,选择相应的安全需求 分类,并添加至安全需求清单列表 ②根据安全需求清单选择安全设计要求,整理为安全设 计清单 ③编码阶段,研发人员基于安全设计文档,落实与本次 需求相关的安全设计要求 安全开发-软件成分分析SCA 开源软件帮助企业快速提升信息化水平,也引入新风险。开源技术应用、国际形势复杂、软件供应链的多样化,0 码力 | 22 页 | 5.47 MB | 1 年前3
23-云原生观察性、自动化交付和 IaC 等之道-高磊!API成了一 种可以交易的商品,可以购买增强自己APP的能力,比如在自己APP里显示天气预报数据,从外部去管理应用平台,形成了一种新PaaS组织方式。 • 逻辑API:已有API的组 合,形成一个新API • 声明API:需要生成代 码框架(任何语言), 契约驱动研发 • BaaS API:数据库接口、 中间件接口外化成API • API门户:消费者可以 根据领域-能力查询到 想要的API。 标准化能力-微服务PAAS-从监控到可观测-研发人员的第五感-1 知道 知道的 不知道 不知道的 主动性 被动性 监控 可观察 健康检查 告警 指标 日志 追踪 问题和根因 预警 监控&稳定性 分析&追踪&排错&探索 • 从稳定性目标出发,首先需要有提示应用出问题的手段 • 当提示出现问题后,就需要有定位问题位置的手段,进 一步要有能够指出问题根因、甚至提前就预警的手段。 拓扑流量图:是不是按预期运行 远端运维是主要的课题,那么就需要从宏观告知 研发人员,并且提供日志、跟踪、问题根因分析 等工具进一步从微观帮助研发人员定位和解决问 题,这是这里在业务上的价值-稳定性赋能。 标准化能力-微服务PAAS-从监控到可观测-研发人员的第五感-2 可观察性是云原生特别关注的运维支撑能力,因为它的主动性,正符合云原生对碎片变化的稳定性保障的思想 数据的全面采集 数据的关联分析 统一监控视图与展现 Metric 是指在多个连 续的时间周期0 码力 | 24 页 | 5.96 MB | 6 月前3
共 25 条
- 1
- 2
- 3













