pandas: powerful Python data analysis toolkit - 0.17.0arcsinh, arctanh, abs and arctan2. These functions map to the intrinsics for the NumExpr engine. For the Python engine, they are mapped to NumPy calls. Changes to Excel with MultiIndex In version 0.16.2 resets name from its result, but retains in result’s Index. (GH10150) • Bug in pd.eval using numexpr engine coerces 1 element numpy array to scalar (GH10546) • Bug in pd.concat with axis=0 when column is Bug in indexing with a PeriodIndex on an object with a PeriodIndex (GH4125) • Bug in read_csv with engine=’c’: EOF preceded by a comment, blank line, etc. was not handled correctly (GH10728, GH10548) •0 码力 | 1787 页 | 10.76 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.1chunk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 924 25.1.22 Specifying the parser engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925 25.1.23 Writing out Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 992 25.9.9 Engine connection examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 993 25.9 building (GH14496) • Fixed regression where user-provided file handles were closed in read_csv (c engine) (GH14418). • Fixed regression in DataFrame.quantile when missing values where present in some columns0 码力 | 1943 页 | 12.06 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.19.0chunk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922 25.1.22 Specifying the parser engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 923 25.1.23 Writing out Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989 25.9.9 Engine connection examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 991 25.9 objects (e.g. pathlib.Path, py.path.local) for the file path (GH11773) • The pd.read_csv() with engine='python' has gained support for the decimal (GH12933), na_filter (GH13321) and the memory_map option0 码力 | 1937 页 | 12.03 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15default Text type for string columns: from sqlalchemy.types import String data.to_sql(’data_dtype’, engine, dtype={’Col_1’: String}) • Series.all and Series.any now support the level and skipna parameters read_sql_table and to_sql (GH7441, GH7952). For example: df.to_sql(’table’, engine, schema=’other_schema’) pd.read_sql_table(’table’, engine, schema=’other_schema’) • Added support for writing NaN values with now has a keyword parameter float_precision which specifies which floating-point converter the C engine should use during parsing, see here (GH8002, GH8044) • Added searchsorted method to Series objects0 码力 | 1579 页 | 9.15 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.15.1read_sql_table and to_sql (GH7441, GH7952). For example: df.to_sql(’table’, engine, schema=’other_schema’) pd.read_sql_table(’table’, engine, schema=’other_schema’) • Added support for writing NaN values with now has a keyword parameter float_precision which specifies which floating-point converter the C engine should use during parsing, see here (GH8002, GH8044) • Added searchsorted method to Series objects method engine keyword now recognizes openpyxl1 and openpyxl2 which will explicitly require openpyxl v1 and v2 respectively, failing if the requested version is not available. The openpyxl engine is a now0 码力 | 1557 页 | 9.10 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.3chunk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021 24.1.24 Specifying the parser engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1022 24.1.25 Reading remote files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095 24.10.9 Engine connection examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1096 24.10 (GH16637) 1.1.1.3 I/O • Bug in read_csv() in which files weren’t opened as binary files by the C engine on Windows, causing EOF characters mid-field, which would fail (GH16039, GH16559, GH16675) • Bug0 码力 | 2045 页 | 9.18 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.20.2chunk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017 24.1.24 Specifying the parser engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1018 24.1.25 Reading remote files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1094 24.10.9 Engine connection examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095 24.10 • Bug in DataFrame.update() with overwrite=False and NaN values (GH15593) • Passing an invalid engine to read_csv() now raises an informative ValueError rather than UnboundLocalError. (GH16511) • Bug0 码力 | 1907 页 | 7.83 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.21.1chunk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1056 24.1.24 Specifying the parser engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057 24.1.25 Reading remote files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130 24.11.9 Engine connection examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131 24.11 IO functionality • DataFrame.to_parquet() will now write non-default indexes when the underlying engine supports it. The indexes will be preserved when reading back in with read_parquet() (GH18581). •0 码力 | 2207 页 | 8.59 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.0files via the engine='openpyxl' argument. This will become the default in a future release (GH11499) • pandas.io.excel.read_excel() supports reading OpenDocument tables. Specify engine='odf' to enable parsing using engine=’python’ (GH26545) • read_excel() now raises a ValueError when input is of type pandas.io.excel.ExcelFile and engine param is passed since pandas.io.excel.ExcelFile has an engine defined 8.0 Google Big Query access psycopg2 PostgreSQL engine for sqlalchemy pyarrow 0.9.0 Parquet and feather reading / writing pymysql 0.7.11 MySQL engine for sqlalchemy pyreadstat SPSS files (.sav) reading0 码力 | 2827 页 | 9.62 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25.1files via the engine='openpyxl' argument. This will become the default in a future release (GH11499) • pandas.io.excel.read_excel() supports reading OpenDocument tables. Specify engine='odf' to enable parsing using engine=’python’ (GH26545) • read_excel() now raises a ValueError when input is of type pandas.io.excel.ExcelFile and engine param is passed since pandas.io.excel.ExcelFile has an engine defined 8.0 Google Big Query access psycopg2 PostgreSQL engine for sqlalchemy pyarrow 0.9.0 Parquet and feather reading / writing pymysql 0.7.11 MySQL engine for sqlalchemy pyreadstat SPSS files (.sav) reading0 码力 | 2833 页 | 9.65 MB | 1 年前3
共 32 条
- 1
- 2
- 3
- 4













