pandas: powerful Python data analysis toolkit - 0.7.3reshape2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 21 API Reference 211 21.1 General functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.7.2 and fixes many minor bugs and adds a number of nice new features. There are also a couple of API changes to note; these should not affect very many users, and we are inclined to call them “bug fixes” plot • Add kurt methods to Series and DataFrame for computing kurtosis 1.1.2 NA Boolean Comparison API Change Reverted some changes to how NA values (represented typically as NaN or None) are handled in0 码力 | 297 页 | 1.92 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.7.2reshape2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 21 API Reference 199 21.1 General functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . objects • Added level argument to xs method of DataFrame. 1.3.2 API Changes to integer indexing One of the potentially riskiest API changes in 0.7.0, but also one of the most important, was a complete Retrieve the j-th column DataFrame.iget_value(i, j) Retrieve the value at row i and column j 1.3.3 API tweaks regarding label-based slicing Label-based slicing using ix now requires that the index be sorted0 码力 | 283 页 | 1.45 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.7.1reshape2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 21 API Reference 199 21.1 General functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . objects • Added level argument to xs method of DataFrame. 1.2.2 API Changes to integer indexing One of the potentially riskiest API changes in 0.7.0, but also one of the most important, was a complete Retrieve the j-th column DataFrame.iget_value(i, j) Retrieve the value at row i and column j 1.2.3 API tweaks regarding label-based slicing Label-based slicing using ix now requires that the index be sorted0 码力 | 281 页 | 1.45 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.25HDF5 reading / writing qtpy Clipboard I/O s3fs 0.0.8 Amazon S3 access xarray 0.8.2 pandas-like API for N-dimensional data xclip Clipboard I/O on linux xlrd 1.1.0 Excel reading xlwt 1.2.0 Excel writing containers in a dictionary-like fashion. Also, we would like sensible default behaviors for the common API functions which take into account the typical orientation of time series and cross-sectional data sets can include categorical data in a DataFrame. For full docs, see the categorical introduction and the API documentation. In [127]: df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], .....: "raw_grade": ['a', 'b'0 码力 | 698 页 | 4.91 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 0.17.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 898 30.4 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 934 34 API Reference 935 34.1 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 v0.17.0 (October 9, 2015) This is a major release from 0.16.2 and includes a small number of API changes, several new features, enhancements, and performance improvements along with a large number0 码力 | 1787 页 | 10.76 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.4Creating example data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1018 3 API reference 1019 3.1 Input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2668 3.15.1 pandas.api.extensions.register_extension_dtype . . . . . . . . . . . . . . . . . . . . . . . . 2668 3.15.2 pandas.api.extensions.register_dataframe_accessor . . . . . . . . . . . . . . 2668 3.15.3 pandas.api.extensions.register_series_accessor . . . . . . . . . . . . . . . . . . . . . . . . . 2670 3.15.4 pandas.api.extensions.register_index_accessor . . . .0 码力 | 3605 页 | 14.68 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.3Creating example data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017 3 API reference 1019 3.1 Input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2668 3.15.1 pandas.api.extensions.register_extension_dtype . . . . . . . . . . . . . . . . . . . . . . . . 2668 3.15.2 pandas.api.extensions.register_dataframe_accessor . . . . . . . . . . . . . . 2668 3.15.3 pandas.api.extensions.register_series_accessor . . . . . . . . . . . . . . . . . . . . . . . . . 2670 3.15.4 pandas.api.extensions.register_index_accessor . . . .0 码力 | 3603 页 | 14.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.2Creating example data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975 3 API reference 977 3.1 Input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2591 3.15.1 pandas.api.extensions.register_extension_dtype . . . . . . . . . . . . . . . . . . . . . . . . 2591 3.15.2 pandas.api.extensions.register_dataframe_accessor . . . . . . . . . . . . . . 2591 3.15.3 pandas.api.extensions.register_series_accessor . . . . . . . . . . . . . . . . . . . . . . . . . 2593 3.15.4 pandas.api.extensions.register_index_accessor . . . .0 码力 | 3509 页 | 14.01 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.4.4Creating example data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026 3 API reference 1027 3.1 Input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2759 3.15.1 pandas.api.extensions.register_extension_dtype . . . . . . . . . . . . . . . . . . . . . . . . 2759 3.15.2 pandas.api.extensions.register_dataframe_accessor . . . . . . . . . . . . . . 2759 3.15.3 pandas.api.extensions.register_series_accessor . . . . . . . . . . . . . . . . . . . . . . . . . 2761 3.15.4 pandas.api.extensions.register_index_accessor . . . .0 码力 | 3743 页 | 15.26 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.4.2Creating example data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026 3 API reference 1027 3.1 Input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2757 3.15.1 pandas.api.extensions.register_extension_dtype . . . . . . . . . . . . . . . . . . . . . . . . 2757 3.15.2 pandas.api.extensions.register_dataframe_accessor . . . . . . . . . . . . . . 2757 3.15.3 pandas.api.extensions.register_series_accessor . . . . . . . . . . . . . . . . . . . . . . . . . 2759 3.15.4 pandas.api.extensions.register_index_accessor . . . .0 码力 | 3739 页 | 15.24 MB | 1 年前3
共 32 条
- 1
- 2
- 3
- 4













