积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(20)Pandas(20)

语言

全部英语(20)

格式

全部PDF文档 PDF(20)
 
本次搜索耗时 0.628 秒,为您找到相关结果约 20 个.
  • 全部
  • 云计算&大数据
  • Pandas
  • 全部
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.3

    rolling_std(rets, 250, min_periods=20) NameError: name ’rets’ is not defined # cap at 3 * 1 year standard deviation In [209]: cap_level = 3 * np.sign(winz) * std_1year ------------------------------------ eb7c33338e> in () ----> 1 cap_level = 3 * np.sign(winz) * std_1year NameError: name ’winz’ is not defined In [210]: winz[np.abs(winz) > 3 * std_1year] = cap_level ---------------------------- in () ----> 1 winz[np.abs(winz) > 3 * std_1year] = cap_level NameError: name ’cap_level’ is not defined In [211]: winz_model = ols(y=winz[’AAPL’], x=winz.ix[:, [’GOOG’]]
    0 码力 | 297 页 | 1.92 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.1

    rolling_std(rets, 250, min_periods=20) # cap at 3 * 1 year standard deviation In [209]: cap_level = 3 * np.sign(winz) * std_1year In [210]: winz[np.abs(winz) > 3 * std_1year] = cap_level In [211]: winz_model =
    0 码力 | 281 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.2

    rolling_std(rets, 250, min_periods=20) # cap at 3 * 1 year standard deviation In [209]: cap_level = 3 * np.sign(winz) * std_1year In [210]: winz[np.abs(winz) > 3 * std_1year] = cap_level In [211]: winz_model =
    0 码力 | 283 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    projectid) Note: A default project id can be set using the command line: bq init. There is a hard cap on BigQuery result sets, at 128MB compressed. Also, the BigQuery SQL query language has some oddities fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    projectid) Note: A default project id can be set using the command line: bq init. There is a hard cap on BigQuery result sets, at 128MB compressed. Also, the BigQuery SQL query language has some oddities fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.12

    fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy
    0 码力 | 657 页 | 3.58 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.0

    style.Styler class pandas.formats.style.Styler(data, precision=None, table_styles=None, uuid=None, cap- tion=None, table_attributes=None) Helps style a DataFrame or Series according to the data with HTML fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy
    0 码力 | 1937 页 | 12.03 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.19.1

    style.Styler class pandas.formats.style.Styler(data, precision=None, table_styles=None, uuid=None, cap- tion=None, table_attributes=None) Helps style a DataFrame or Series according to the data with HTML fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy
    0 码力 | 1943 页 | 12.06 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    optional] If string, the LaTeX table caption included as: \cap- tion{}. If tuple, i.e (“full caption”, “short caption”), the caption included as: \cap- tion[]{}. 3.1. Input/output
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.4

    optional] If string, the LaTeX table caption included as: \cap- tion{}. If tuple, i.e (“full caption”, “short caption”), the caption included as: \cap- tion[]{}. 3.1. Input/output
    0 码力 | 3605 页 | 14.68 MB | 1 年前
    3
共 20 条
  • 1
  • 2
前往
页
相关搜索词
pandaspowerfulPythondataanalysistoolkit0.70.130.140.120.191.3
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩