 pandas: powerful Python data analysis toolkit - 0.7.3rolling_std(rets, 250, min_periods=20) NameError: name ’rets’ is not defined # cap at 3 * 1 year standard deviation In [209]: cap_level = 3 * np.sign(winz) * std_1year ------------------------------------ eb7c33338e> in pandas: powerful Python data analysis toolkit - 0.7.3rolling_std(rets, 250, min_periods=20) NameError: name ’rets’ is not defined # cap at 3 * 1 year standard deviation In [209]: cap_level = 3 * np.sign(winz) * std_1year ------------------------------------ eb7c33338e> in- () ----> 1 cap_level = 3 * np.sign(winz) * std_1year NameError: name ’winz’ is not defined In [210]: winz[np.abs(winz) > 3 * std_1year] = cap_level ---------------------------- - in - () ----> 1 winz[np.abs(winz) > 3 * std_1year] = cap_level NameError: name ’cap_level’ is not defined In [211]: winz_model = ols(y=winz[’AAPL’], x=winz.ix[:, [’GOOG’]] 0 码力 | 297 页 | 1.92 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.7.1rolling_std(rets, 250, min_periods=20) # cap at 3 * 1 year standard deviation In [209]: cap_level = 3 * np.sign(winz) * std_1year In [210]: winz[np.abs(winz) > 3 * std_1year] = cap_level In [211]: winz_model =0 码力 | 281 页 | 1.45 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.7.1rolling_std(rets, 250, min_periods=20) # cap at 3 * 1 year standard deviation In [209]: cap_level = 3 * np.sign(winz) * std_1year In [210]: winz[np.abs(winz) > 3 * std_1year] = cap_level In [211]: winz_model =0 码力 | 281 页 | 1.45 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.7.2rolling_std(rets, 250, min_periods=20) # cap at 3 * 1 year standard deviation In [209]: cap_level = 3 * np.sign(winz) * std_1year In [210]: winz[np.abs(winz) > 3 * std_1year] = cap_level In [211]: winz_model =0 码力 | 283 页 | 1.45 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.7.2rolling_std(rets, 250, min_periods=20) # cap at 3 * 1 year standard deviation In [209]: cap_level = 3 * np.sign(winz) * std_1year In [210]: winz[np.abs(winz) > 3 * std_1year] = cap_level In [211]: winz_model =0 码力 | 283 页 | 1.45 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.13.1projectid) Note: A default project id can be set using the command line: bq init. There is a hard cap on BigQuery result sets, at 128MB compressed. Also, the BigQuery SQL query language has some oddities fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy0 码力 | 1219 页 | 4.81 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.13.1projectid) Note: A default project id can be set using the command line: bq init. There is a hard cap on BigQuery result sets, at 128MB compressed. Also, the BigQuery SQL query language has some oddities fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy0 码力 | 1219 页 | 4.81 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.14.0projectid) Note: A default project id can be set using the command line: bq init. There is a hard cap on BigQuery result sets, at 128MB compressed. Also, the BigQuery SQL query language has some oddities fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy0 码力 | 1349 页 | 7.67 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.14.0projectid) Note: A default project id can be set using the command line: bq init. There is a hard cap on BigQuery result sets, at 128MB compressed. Also, the BigQuery SQL query language has some oddities fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy0 码力 | 1349 页 | 7.67 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.12fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy0 码力 | 657 页 | 3.58 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.12fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy0 码力 | 657 页 | 3.58 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.19.0style.Styler class pandas.formats.style.Styler(data, precision=None, table_styles=None, uuid=None, cap- tion=None, table_attributes=None) Helps style a DataFrame or Series according to the data with HTML fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy0 码力 | 1937 页 | 12.03 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.19.0style.Styler class pandas.formats.style.Styler(data, precision=None, table_styles=None, uuid=None, cap- tion=None, table_attributes=None) Helps style a DataFrame or Series according to the data with HTML fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy0 码力 | 1937 页 | 12.03 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.19.1style.Styler class pandas.formats.style.Styler(data, precision=None, table_styles=None, uuid=None, cap- tion=None, table_attributes=None) Helps style a DataFrame or Series according to the data with HTML fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy0 码力 | 1943 页 | 12.06 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.19.1style.Styler class pandas.formats.style.Styler(data, precision=None, table_styles=None, uuid=None, cap- tion=None, table_attributes=None) Helps style a DataFrame or Series according to the data with HTML fillna, FutureWarning added to fill • Renamed DataFrame.getXS to xs, FutureWarning added • Removed cap and floor functions from DataFrame, renamed to clip_upper and clip_lower for consistency with NumPy0 码力 | 1943 页 | 12.06 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 1.3.3optional] If string, the LaTeX table caption included as: \cap- tion{ pandas: powerful Python data analysis toolkit - 1.3.3optional] If string, the LaTeX table caption included as: \cap- tion{- }. If tuple, i.e (“full caption”, “short caption”), the caption included as: \cap- tion[ - ]{ - }. 3.1. Input/output 0 码力 | 3603 页 | 14.65 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 1.3.4optional] If string, the LaTeX table caption included as: \cap- tion{ pandas: powerful Python data analysis toolkit - 1.3.4optional] If string, the LaTeX table caption included as: \cap- tion{- }. If tuple, i.e (“full caption”, “short caption”), the caption included as: \cap- tion[ - ]{ - }. 3.1. Input/output 0 码力 | 3605 页 | 14.68 MB | 1 年前3
共 20 条
- 1
- 2













