 pandas: powerful Python data analysis toolkit - 0.7.2checked out using git and compiled / installed like so: git clone git://github.com/pydata/pandas.git cd pandas python setup.py install On Windows, I suggest installing the MinGW compiler suite following 0x1150294d0> In [743]: ts.interpolate().plot(ax=axes[1]) Out[743]: pandas: powerful Python data analysis toolkit - 0.7.2checked out using git and compiled / installed like so: git clone git://github.com/pydata/pandas.git cd pandas python setup.py install On Windows, I suggest installing the MinGW compiler suite following 0x1150294d0> In [743]: ts.interpolate().plot(ax=axes[1]) Out[743]:- cd0> 114 Chapter 9. Working with missing data pandas: powerful Python data analysis toolkit, Release rpy2 from bitbucket: # if installing for the first time hg clone http://bitbucket.org/lgautier/rpy2 cd rpy2 hg pull hg update sudo python setup.py install Note: To use R packages with this interface, you 0 码力 | 283 页 | 1.45 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 1.0.04, 1000), figsize=(6, 4)) Out[36]: array([[ pandas: powerful Python data analysis toolkit - 1.0.04, 1000), figsize=(6, 4)) Out[36]: array([[- cd4c710>, - ], [ - , - cd0>, - ]], dtype=object) 610 Chapter 0 Axes> In [124]: ax = df.plot(secondary_y=['A', 'B']) In [125]: ax.set_ylabel('CD scale') Out[125]: Text(0, 0.5, 'CD scale') In [126]: ax.right_ax.set_ylabel('AB scale') Out[126]: Text(0, 0.5, 'AB scale') 0 码力 | 3015 页 | 10.78 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.7.1checked out using git and compiled / installed like so: git clone git://github.com/pydata/pandas.git cd pandas python setup.py install On Windows, I suggest installing the MinGW compiler suite following rpy2 from bitbucket: # if installing for the first time hg clone http://bitbucket.org/lgautier/rpy2 cd rpy2 hg pull hg update sudo python setup.py install Note: To use R packages with this interface, you0 码力 | 281 页 | 1.45 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.7.1checked out using git and compiled / installed like so: git clone git://github.com/pydata/pandas.git cd pandas python setup.py install On Windows, I suggest installing the MinGW compiler suite following rpy2 from bitbucket: # if installing for the first time hg clone http://bitbucket.org/lgautier/rpy2 cd rpy2 hg pull hg update sudo python setup.py install Note: To use R packages with this interface, you0 码力 | 281 页 | 1.45 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.7.3checked out using git and compiled / installed like so: git clone git://github.com/pydata/pandas.git cd pandas python setup.py install On Windows, I suggest installing the MinGW compiler suite following be obtained with: # if installing for the first time hg clone http://bitbucket.org/lgautier/rpy2 cd rpy2 hg pull hg update version_2.2.x sudo python setup.py install Note: To use R packages with this0 码力 | 297 页 | 1.92 MB | 1 年前3 pandas: powerful Python data analysis toolkit - 0.7.3checked out using git and compiled / installed like so: git clone git://github.com/pydata/pandas.git cd pandas python setup.py install On Windows, I suggest installing the MinGW compiler suite following be obtained with: # if installing for the first time hg clone http://bitbucket.org/lgautier/rpy2 cd rpy2 hg pull hg update version_2.2.x sudo python setup.py install Note: To use R packages with this0 码力 | 297 页 | 1.92 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.12checked out using git and compiled / installed like so: git clone git://github.com/pydata/pandas.git cd pandas python setup.py install Make sure you have Cython installed when installing from the repository figure.Figure at 0x907c950> In [22]: ax = df.plot(secondary_y=[’A’, ’B’]) In [23]: ax.set_ylabel(’CD scale’) pandas: powerful Python data analysis toolkit - 0.12checked out using git and compiled / installed like so: git clone git://github.com/pydata/pandas.git cd pandas python setup.py install Make sure you have Cython installed when installing from the repository figure.Figure at 0x907c950> In [22]: ax = df.plot(secondary_y=[’A’, ’B’]) In [23]: ax.set_ylabel(’CD scale’)- In [24]: ax.right_ax.set_ylabel(’AB scale’) - cd0> In [85]: radviz(data, ’Name’) - 16.2. Other plotting 0 码力 | 657 页 | 3.58 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.17.0clone your fork to your machine: git clone git@github.com:your-user-name/pandas.git pandas-yourname cd pandas-yourname git remote add upstream git://github.com/pydata/pandas.git This creates the directory Install either Install Anaconda or Install miniconda • Make sure that you have cloned the repository • cd to the pandas source directory Tell conda to create a new environment, named pandas_dev, or any name [72]: series.plot(kind='pie', figsize=(6, 6)) Out[72]: pandas: powerful Python data analysis toolkit - 0.17.0clone your fork to your machine: git clone git@github.com:your-user-name/pandas.git pandas-yourname cd pandas-yourname git remote add upstream git://github.com/pydata/pandas.git This creates the directory Install either Install Anaconda or Install miniconda • Make sure that you have cloned the repository • cd to the pandas source directory Tell conda to create a new environment, named pandas_dev, or any name [72]: series.plot(kind='pie', figsize=(6, 6)) Out[72]:- cd248cc> 23.2. Other Plots 703 pandas: powerful Python data analysis toolkit, Release 0.17.0 For pie 0 码力 | 1787 页 | 10.76 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.25.1AxesSubplot object at 0x7f19f2847490>, pandas: powerful Python data analysis toolkit - 0.25.1AxesSubplot object at 0x7f19f2847490>,- cd0>, - , - , - cd0050>, - , - In [124]: ax = df.plot(secondary_y=['A', 'B']) In [125]: ax.set_ylabel('CD scale') Out[125]: Text(0, 0.5, 'CD scale') In [126]: ax.right_ax.set_ylabel('AB scale') \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Out[126]: 0 码力 | 2833 页 | 9.65 MB | 1 年前3
 pandas: powerful Python data analysis toolkit -1.0.3----------------------------------- NameError Traceback (most recent call last) pandas: powerful Python data analysis toolkit -1.0.3----------------------------------- NameError Traceback (most recent call last)- cd9ac77fc4c4> in - ----> 1 data = pd.Series(np.random.randn(1000)) NameError: name 'pd' is not ---------------------------- NameError Traceback (most recent call last) - cd1aac> in - ----> 1 data = pd.Series(np.random.rand(1000)) NameError: name 'pd' is not defined ax = df.plot(secondary_y=['A', 'B']) NameError: name 'df' is not defined In [125]: ax.set_ylabel('CD scale') --------------------------------------------------------------------------- NameError Traceback 0 码力 | 3071 页 | 10.10 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.25------------------------- ImportError Traceback (most recent call last) pandas: powerful Python data analysis toolkit - 0.25------------------------- ImportError Traceback (most recent call last)- cd2c3> in - ----> 1 df.to_parquet('test.parquet', index=False) ~/sandbox/pandas-release/pandas/pandas/core/frame 0 Axes> In [124]: ax = df.plot(secondary_y=['A', 'B']) In [125]: ax.set_ylabel('CD scale') Out[125]: Text(0, 0.5, 'CD scale') In [126]: ax.right_ax.set_ylabel('AB scale') Out[126]: Text(0, 0.5, 'AB scale') 0 码力 | 698 页 | 4.91 MB | 1 年前3
 pandas: powerful Python data analysis toolkit - 0.13.1checked out using git and compiled / installed like so: git clone git://github.com/pydata/pandas.git cd pandas python setup.py install Make sure you have Cython installed when installing from the repository figure.Figure at 0x144caa10> In [23]: ax = df.plot(secondary_y=[’A’, ’B’]) In [24]: ax.set_ylabel(’CD scale’) Out[24]: pandas: powerful Python data analysis toolkit - 0.13.1checked out using git and compiled / installed like so: git clone git://github.com/pydata/pandas.git cd pandas python setup.py install Make sure you have Cython installed when installing from the repository figure.Figure at 0x144caa10> In [23]: ax = df.plot(secondary_y=[’A’, ’B’]) In [24]: ax.set_ylabel(’CD scale’) Out[24]:- In [25]: ax.right_ax.set_ylabel(’AB scale’) for the same Trellis structure. In [12]: plt.figure() Out[12]: - cd0> In [13]: plot = rplot.RPlot(tips_data, x=’total_bill’, y=’tip’) In [14]: plot.add(rplot.TrellisGrid([’sex’ 0 码力 | 1219 页 | 4.81 MB | 1 年前3
共 32 条
- 1
- 2
- 3
- 4













