pandas: powerful Python data analysis toolkit - 0.21.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1.1 Integration with Apache Parquet file format . . . . . . . . . . . . . . . . . . . . . 8 1.2.1.2 infer_objects type conversion . . . . . . . . . . . . . . . 2012 35 Developer 2013 35.1 Storing pandas DataFrame objects in Apache Parquet format . . . . . . . . . . . . . . . . . . . . . . 2013 36 Internals 2017 36.1 Indexing Binary Installers: http://pypi.python.org/pypi/pandas Source Repository: http://github.com/pandas-dev/pandas Issues & Ideas: https://github.com/pandas-dev/pandas/issues Q&A Support: http://stackoverflow0 码力 | 2207 页 | 8.59 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.2. . . . . . . . . . . . . . . . . . . . . . . . 2674 4.11.1 Storing pandas DataFrame objects in Apache Parquet format . . . . . . . . . . . . . . . . . 2674 4.12 Policies . . . . . . . . . . . . . . missing value handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2678 4.13.4 Apache Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2678 4 the cloud Dependency Minimum Version Notes fsspec 0.7.4 Handling files aside from simple local and HTTP gcsfs 0.6.0 Google Cloud Storage access pandas-gbq 0.12.0 Google Big Query access s3fs 0.4.0 Amazon0 码力 | 3509 页 | 14.01 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.3. . . . . . . . . . . . . . . . . . . . . . . . 2753 4.11.1 Storing pandas DataFrame objects in Apache Parquet format . . . . . . . . . . . . . . . . . 2753 4.12 Policies . . . . . . . . . . . . . . missing value handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2757 4.13.4 Apache Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2757 4 the cloud Dependency Minimum Version Notes fsspec 0.7.4 Handling files aside from simple local and HTTP gcsfs 0.6.0 Google Cloud Storage access pandas-gbq 0.12.0 Google Big Query access s3fs 0.4.0 Amazon0 码力 | 3603 页 | 14.65 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.3.4. . . . . . . . . . . . . . . . . . . . . . . . 2753 4.11.1 Storing pandas DataFrame objects in Apache Parquet format . . . . . . . . . . . . . . . . . 2753 4.12 Policies . . . . . . . . . . . . . . missing value handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2757 4.13.4 Apache Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2757 4 the cloud Dependency Minimum Version Notes fsspec 0.7.4 Handling files aside from simple local and HTTP gcsfs 0.6.0 Google Cloud Storage access pandas-gbq 0.12.0 Google Big Query access s3fs 0.4.0 Amazon0 码力 | 3605 页 | 14.68 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0. . . . . . . . . . . . . . . . . . . . . . . . . 2381 4.6.1 Storing pandas DataFrame objects in Apache Parquet format . . . . . . . . . . . . . . . . . 2381 4.7 Policies . . . . . . . . . . . . . . type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2385 4.8.3 Apache Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2386 4 [various] Either a path to a file (a str, pathlib.Path, or py._path.local. LocalPath), URL (including http, ftp, and S3 locations), or any object with a read() method (such as an open file or StringIO). sep0 码力 | 3091 页 | 10.16 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.4. . . . . . . . . . . . . . . . . . . . . . . . . 2377 4.6.1 Storing pandas DataFrame objects in Apache Parquet format . . . . . . . . . . . . . . . . . 2377 4.7 Policies . . . . . . . . . . . . . . type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2381 4.8.3 Apache Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2382 4 [various] Either a path to a file (a str, pathlib.Path, or py._path.local. LocalPath), URL (including http, ftp, and S3 locations), or any object with a read() method (such as an open file or StringIO). sep0 码力 | 3081 页 | 10.24 MB | 1 年前3
pandas: powerful Python data analysis toolkit -1.0.3. . . . . . . . . . . . . . . . . . . . . . . . . 2367 5.6.1 Storing pandas DataFrame objects in Apache Parquet format . . . . . . . . . . . . . . . . . 2367 5.7 Policies . . . . . . . . . . . . . . type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2371 5.8.3 Apache Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2372 5 [various] Either a path to a file (a str, pathlib.Path, or py._path.local. LocalPath), URL (including http, ftp, and S3 locations), or any object with a read() method (such as an open file or StringIO). sep0 码力 | 3071 页 | 10.10 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.1. . . . . . . . . . . . . . . . . . . . . . . . . 2476 4.6.1 Storing pandas DataFrame objects in Apache Parquet format . . . . . . . . . . . . . . . . . 2476 4.7 Policies . . . . . . . . . . . . . . type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2480 4.8.3 Apache Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2480 4 0.9.8 Excel writing blosc Compression for HDF5 fsspec 0.7.4 Handling files aside from local and HTTP fastparquet 0.3.2 Parquet reading / writing gcsfs 0.6.0 Google Cloud Storage access html5lib HTML0 码力 | 3231 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.1.0. . . . . . . . . . . . . . . . . . . . . . . . . 2476 4.6.1 Storing pandas DataFrame objects in Apache Parquet format . . . . . . . . . . . . . . . . . 2476 4.7 Policies . . . . . . . . . . . . . . type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2480 4.8.3 Apache Arrow interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2480 4 0.9.8 Excel writing blosc Compression for HDF5 fsspec 0.7.4 Handling files aside from local and HTTP fastparquet 0.3.2 Parquet reading / writing gcsfs 0.6.0 Google Cloud Storage access html5lib HTML0 码力 | 3229 页 | 10.87 MB | 1 年前3
pandas: powerful Python data analysis toolkit - 1.0.0[various] Either a path to a file (a str, pathlib.Path, or py._path.local. LocalPath), URL (including http, ftp, and S3 locations), or any object with a read() method (such as an open file or StringIO). sep VALID JSON string or file handle / StringIO. The string could be a URL. Valid URL schemes include http, ftp, S3, and file. For file URLs, a host is expected. For instance, a local file could be file : datetime64[ns, US/Eastern] i datetime64[ns] dtype: object 3.1.12 Parquet New in version 0.21.0. Apache Parquet provides a partitioned binary columnar serialization for data frames. It is designed to make0 码力 | 3015 页 | 10.78 MB | 1 年前3
共 32 条
- 1
- 2
- 3
- 4













