积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(13)机器学习(13)

语言

全部英语(7)中文(简体)(6)

格式

全部PDF文档 PDF(13)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 13 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 PyTorch Release Notes

    data scientists, engineers, and researchers understand improve performance of their models with visualization by using the DLProf Viewer in a web browser or by analyzing text reports. DL Prof is available data scientists, engineers, and researchers understand improve performance of their models with visualization by using the DLProf Viewer in a web browser or by analyzing text reports. DL Prof is available data scientists, engineers, and researchers understand improve performance of their models with visualization by using the DLProf Viewer in a web browser or by analyzing text reports. DL Prof is available
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    PyTorch • Tensors • Autograd • Modular structure • Models / Layers • Datasets • Dataloader • Visualization Tools like • TensorboardX (monitor training) • PyTorchViz (visualise computation graph) • Various compiler which mode to run on. Visualization • TensorboardX (visualise training) • PyTorchViz (visualise computation graph) https://github.com/lanpa/tensorboardX/ Visualization (continued) • PyTorchViz
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    and just training the prediction head, or training the entire model. Refer to figure 6-5 for a visualization of creating a fine-tuning a pre-trained model on a downstream task. Figure 6-5: Fine-tuning a parameters having smaller absolute values due to occam’s razor23. Refer to figure 6-14 for a visualization of steep and flat local minimas. The left hand side image shows a loss landscape that has a sharp neighborhood of the minima shows a gradual drop as compared to the left. Figure 6-14: Partial visualization of a loss landscape with a steep local minima (left) and a relatively flatter local minima (right)
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 18 可视化 Visualization 234 19 Scikit-learn API 235 20 工具 236 20.1 CustomObjectScope [source] . . . . . . . . . . 有关如何使用此类预训练的模型进行特征提取或微调的详细示例,请参阅 此博客文章。 VGG16 模型也是以下几个 Keras 示例脚本的基础: • Style transfer • Feature visualization • Deep dream 3.3.18 如何在 Keras 中使用 HDF5 输入? 你可以使用 keras.utils.io_utils 中的 HDF5Matrix 类。有关详细信息,请参阅 • min_max_norm(min_value=0.0, max_value=1.0, rate=1.0, axis=0): 最小/最大范数约束 可视化 VISUALIZATION 234 18 可视化 Visualization 模型可视化⁇ keras.utils.vis_utils 模块提供了一些绘制 Keras 模型的实用功能 (使用 graphviz)。 以下实例,将绘制一张模型图,并保存为文件:
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 40. Batch Norm

    alternative-to-batch-normalization-fb0699bffae7 Pipeline nn.BatchNorm2d Class variables Test Visualization Advantages ▪ Converge faster ▪ Better performance ▪ Robust ▪ stable ▪ larger learning rate
    0 码力 | 16 页 | 1.29 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 50. RNN训练难题

    Gradient Vanishing: 1997 http://harinisuresh.com/2016/10/09/lstms/ RNN V.S. LSTM Gradient Visualization https://imgur.com/gallery/vaNahKE 下一课时 LSTM Thank You.
    0 码力 | 12 页 | 967.80 KB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》8-TensorFlow社区参与指南

    ���� Business Requirement Production Design Data Processing Model Training Model Visualization Model Serving Production Verification Business Success ���� ����� ���� ��-��-�� ���
    0 码力 | 46 页 | 38.88 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 54. AutoEncoder自编码器

    needed ▪ Dimension reduction ▪ Preprocessing: Huge dimension, say 224x224, is hard to process ▪ Visualization: https://projector.tensorflow.org/ ▪ Taking advantages of unsupervised data ▪ Compression, denoising
    0 码力 | 29 页 | 3.49 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    values (an integration problem). How can we do this efficiently when there are many parame- ters. Visualization Understanding what’s happening is hard, 2D? 3D? All these challenges become greater when there
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-10机器学习-聚类

    Campello R J G B, Moulavi D, Zimek A, et al. Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection[J]. Acm Transactions on Knowledge Discovery from Data, 2015. [11] 彭 涛
    0 码力 | 48 页 | 2.59 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
PyTorchReleaseNotesTutorialEfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewKeras基于Python深度学习入门实战40BatchNorm50RNN训练难题TensorFlow快速社区参与指南54AutoEncoder编码码器编码器LectureOverview机器课程温州大学10聚类
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩