积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(9)机器学习(9)

语言

全部英语(6)中文(简体)(3)

格式

全部PDF文档 PDF(9)
 
本次搜索耗时 0.027 秒,为您找到相关结果约 9 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野

    All rights reserved. Tables Look Different © 2018 Bloomberg Finance L.P. All rights reserved. Tables Look Different © 2018 Bloomberg Finance L.P. All rights reserved. Tables Look Different © 2018 All rights reserved. Tables Look Different © 2018 Bloomberg Finance L.P. All rights reserved. Tables Look Different © 2018 Bloomberg Finance L.P. All rights reserved. Tables Look Different © 2018
    0 码力 | 64 页 | 13.45 MB | 1 年前
    3
  • pdf文档 keras tutorial

    installation is quite easy. Follow below steps to properly install Keras on your system. Step 1: Create virtual environment Virtualenv is used to manage Python packages for different projects. This will be helpful recommended to use a virtual environment while developing Python applications. Linux/Mac OS Linux or mac OS users, go to your project root directory and type the below command to create virtual environment configure python and pip executables in your shell path. Linux/Mac OS Now we have created a virtual environment named “kerasvenv”. Move to the folder and type the below command, $ cd kerasvenv
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    embeddings, in the next section, let’s learn to use them to improve deep learning models. Embedding Tables: Learn once, use many times! The most interesting outcome of the above training is the word embeddings embeddings are agnostic to the model architecture of the downstream task. In essence, the embedding tables provide us a portable memory bank of knowledge about our domain of interest. This knowledge can be scale them to NLP applications and beyond. My embedding table is huge! Help me! While embedding tables help in dimensionality reduction by capturing relationships between different possible inputs, they
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Source) Similarly for natural language models, one of the costlier parts of the models are Embedding Tables, where each input token that is likely to be seen during inference, is assigned a learned embedding semantic representation of that token in a fixed-dimensional floating point vector. These embedding tables are very useful, because they help us convert abstract concepts hidden in natural language into a
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    clustering (or any other compression technique for which there isn’t native support) is embedding tables. Embedding tables are unique because the forward pass for them is a simple lookup in the table using the provided
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》2-TensorFlow初接触

    Jupyter Notebook ��� TensorFlow “Hello TensorFlow” Try it ������ TensorFlow VM vs Docker Container Virtual Machine Docker Container � Docker ��� TensorFlow https://hub.docker.com/editions/community/docker-ce-desktop-mac
    0 码力 | 20 页 | 15.87 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-15深度学习-GAN

    历史平均(historical averaging) d.单边标签平滑(one-sided label smoothing) e.虚拟批量正则(virtual batch normalization) 2. GAN的理论与实现模型 24 03 GAN 的应用 01 生成式深度学习简介 02 GAN的理论与实现模型 04
    0 码力 | 35 页 | 1.55 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    performed in chapter 4 with the embeddings. The numeric identifiers are indices into the embedding tables in the pre-trained model. We will use this pre-processing layer to tokenize our training and test
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    software that you installed to prepare to run NGC containers on TITAN PCs, Quadro PCs, or NVIDIA Virtual GPUs (vGPUs). Procedure 1. Issue the command for the applicable release of the container that
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
共 9 条
  • 1
前往
页
相关搜索词
QCon北京2018键盘输入键盘输入神经网络神经网神经网络深度学习彭博应用李碧野kerastutorialEfficientDeepLearningBookEDLChapterArchitecturesIntroductionAdvancedCompressionTechniquesTensorFlow快速入门实战接触机器课程温州大学15GANTechnicalReviewPyTorchReleaseNotes
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩