积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(46)机器学习(46)

语言

全部中文(简体)(28)英语(18)

格式

全部PDF文档 PDF(46)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 46 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Machine Learning

    Machine Learning Lecture 10: Neural Networks and Deep Learning Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Deep Feedforward f(x) is usually a highly non-linear function • Feedforward networks are of extreme importance to machine learning practioners • The conventional neural networks (CNN) used for object recognition from photos
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Machine Learning Pytorch Tutorial TA : 曾元(Yuan Tseng) 2022.02.18 Outline ● Background: Prerequisites & What is Pytorch? ● Training & Testing Neural Networks in Pytorch ● Dataset & Dataloader ● Tensors year ■ ref: link1, link2 Some knowledge of NumPy will also be useful! What is PyTorch? ● An machine learning framework in Python. ● Two main features: ○ N-dimensional Tensor computation (like NumPy) translation, synthesis, ...) ○ Most implementations of recent deep learning papers ○ ... References ● Machine Learning 2021 Spring Pytorch Tutorial ● Official Pytorch Tutorials ● https://numpy.org/ Any questions
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    Lecture Notes on Support Vector Machine Feng Li fli@sdu.edu.cn Shandong University, China 1 Hyperplane and Margin In a n-dimensional space, a hyper plane is defined by ωT x + b = 0 (1) where ω ∈ Rn defined as γ = min i γ(i) (6) 1 ? ? ! ? ! Figure 1: Margin and hyperplane. 2 Support Vector Machine 2.1 Formulation The hyperplane actually serves as a decision boundary to differentiating positive we can construct a infinite number of hyperplanes, but which one is the best? Supported Vector Machine (SVM) answers the above question by maximizing γ (see Eq. (6)) as follows max γ,ω,b γ s.t. y(i)(ωT
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    Lecture 6: Support Vector Machine Feng Li Shandong University fli@sdu.edu.cn December 28, 2021 Feng Li (SDU) SVM December 28, 2021 1 / 82 Outline 1 SVM: A Primal Form 2 Convex Optimization Review (b < 0 means in opposite direction) Feng Li (SDU) SVM December 28, 2021 3 / 82 Support Vector Machine A hyperplane based linear classifier defined by ω and b Prediction rule: y = sign(ωTx + b) Given: " such that min& ' & !() & + " = 1 Feng Li (SDU) SVM December 28, 2021 14 / 82 Support Vector Machine (Primal Form) Maximizing 1/∥ω∥ is equivalent to minimizing ∥ω∥2 = ωTω min ω,b ωTω s.t. y(i)(ωTx(i)
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 keras tutorial

    addition to this, it will be very helpful, if the readers have a sound knowledge of Python and Machine Learning. Copyright & Disclaimer  Copyright 2019 by Tutorials Point (I) Pvt. Ltd. All Keras 1 Deep learning is one of the major subfield of machine learning framework. Machine learning is the study of design of algorithms, inspired from the model of human brain etc., for creating deep learning models. Overview of Keras Keras runs on top of open source machine libraries like TensorFlow, Theano or Cognitive Toolkit (CNTK). Theano is a python library used for
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》2-TensorFlow初接触

    Notebook ��� TensorFlow “Hello TensorFlow” Try it ������ TensorFlow VM vs Docker Container Virtual Machine Docker Container � Docker ��� TensorFlow https://hub.docker.com/editions/community/docker-ce-desktop-mac
    0 码力 | 20 页 | 15.87 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    software that you installed to prepare to run NGC containers on TITAN PCs, Quadro PCs, or NVIDIA Virtual GPUs (vGPUs). Procedure 1. Issue the command for the applicable release of the container that is similar to the model that is discussed in the Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation paper. This model script is available on GitHub and is similar to the model that is discussed in the Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation paper. PyTorch Release 23.06 PyTorch RN-08516-001_v23
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    1 / 57 Lecture 1: Overview 1 About the Course 2 Machine Learning: What and Why? 3 Categories of Machine Learning 4 Some Basic Concepts of Machine Learning Feng Li (SDU) Overview September 6, 2023 / 57 Course Information We will investigate fundamental concepts, techniques and algorithms in machine learning. The topics include linear regression, logistic re- gression, regularization, Gaussian discriminant Hang Li, Statistical Machine Learning (2nd Ed.), The Tsinghua Press, 2019 Zhihua Zhou, Machine Learning, Tsinghua Press, 2016 Tom M. Mitchell, Machine Learning (1st Ed.), China Machine Press, 2008 Ian Goodfellow
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    start off on our journey to more efficient deep learning models. Introduction to Deep Learning Machine learning is being used in countless applications today. It is a natural fit in domains where there problems where we expect exact optimal answers, machine learning applications can often tolerate approximate responses, since often there are no exact answers. Machine learning algorithms help build models, which Relation between Artificial Intelligence, Machine Learning, and Deep Learning. Deep learning is one possible way of solving machine learning problems. Machine learning in turn is one approach towards
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    examples / more than two features? In those cases, we could use classical machine learning algorithms like the Support Vector Machine4 (SVM) to learn classifiers that would do this for us. We could rely on embeddings for the inputs using machine learning algorithms of your choice. 2. Embedding Lookup: Look up the embeddings for the inputs in the embedding table. 4 Support Vector Machine - https://en.wikipedia. org/wiki/Support-vector_machine 3. Train the model: Train the model for the task at hand5 with the embeddings as input. Refer to Figure 4-4 that describes the three steps visually. Figure 4-4: A high-level
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
共 46 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
MachineLearningPytorchTutorialLectureNotesonSupportVectorkerastutorialTensorFlow快速入门实战接触PyTorchReleaseOverviewEfficientDeepBookEDLChapterIntroductionArchitectures
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩