 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient ArchitecturesIllustrated Word2vec - https://jalammar.github.io/illustrated-word2vec/ The nifty embedding projector tool visualizes embeddings in three dimensions and enables to see which embeddings lie close to a given the sanity check. You can further play with this tool to visualize the embeddings for different words. Figure 4-10: Using the embedding projector tool to visualize the word2vec embeddings in 3-D. Now sequence across n time steps. RNNs are also used for sequence to sequence applications like machine translation, where both the input and output are sequences. Consider the task of training a model to translate0 码力 | 53 页 | 3.92 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient ArchitecturesIllustrated Word2vec - https://jalammar.github.io/illustrated-word2vec/ The nifty embedding projector tool visualizes embeddings in three dimensions and enables to see which embeddings lie close to a given the sanity check. You can further play with this tool to visualize the embeddings for different words. Figure 4-10: Using the embedding projector tool to visualize the word2vec embeddings in 3-D. Now sequence across n time steps. RNNs are also used for sequence to sequence applications like machine translation, where both the input and output are sequences. Consider the task of training a model to translate0 码力 | 53 页 | 3.92 MB | 1 年前3
 PyTorch Release Notessimilar to the model that is discussed in the Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation paper. This model script is available on GitHub and NGC. Known similar to the model that is discussed in the Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation paper. PyTorch Release 23.06 PyTorch RN-08516-001_v23.07 | similar to the model that is discussed in the Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation paper. This model script is available on GitHub and NGC. Known0 码力 | 365 页 | 2.94 MB | 1 年前3 PyTorch Release Notessimilar to the model that is discussed in the Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation paper. This model script is available on GitHub and NGC. Known similar to the model that is discussed in the Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation paper. PyTorch Release 23.06 PyTorch RN-08516-001_v23.07 | similar to the model that is discussed in the Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation paper. This model script is available on GitHub and NGC. Known0 码力 | 365 页 | 2.94 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesquality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer adoption because it wouldn’t speak different languages. An application that employs a high quality model with a reasonable translation accuracy would garner better consumer support. In this chapter, our focus will be on the techniques techniques use models to generate samples for labels. Consider a training sample for English to Spanish translation: [English: “I am doing really well”, Spanish: “Estoy muy bien”]. Let’s say we have another model0 码力 | 56 页 | 18.93 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesquality is an important benchmark to evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer adoption because it wouldn’t speak different languages. An application that employs a high quality model with a reasonable translation accuracy would garner better consumer support. In this chapter, our focus will be on the techniques techniques use models to generate samples for labels. Consider a training sample for English to Spanish translation: [English: “I am doing really well”, Spanish: “Estoy muy bien”]. Let’s say we have another model0 码力 | 56 页 | 18.93 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductionexperience in low or no-connectivity areas. This is made possible with an efficient on-device translation model. Explosion of Models Often there might be multiple ML models being served concurrently networks for common datasets like CIFAR-10, ImageNet, WMT etc. An example network for machine translation is shown in Figure 1-14, where using Neural Architecture Search, the authors improve over the Encoder architecture that is the leading architecture being used for complex NLP tasks such as translation. The NAS generated architecture, which is named Evolved Transformer8, achieves better quality at0 码力 | 21 页 | 3.17 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introductionexperience in low or no-connectivity areas. This is made possible with an efficient on-device translation model. Explosion of Models Often there might be multiple ML models being served concurrently networks for common datasets like CIFAR-10, ImageNet, WMT etc. An example network for machine translation is shown in Figure 1-14, where using Neural Architecture Search, the authors improve over the Encoder architecture that is the leading architecture being used for complex NLP tasks such as translation. The NAS generated architecture, which is named Evolved Transformer8, achieves better quality at0 码力 | 21 页 | 3.17 MB | 1 年前3
 动手学深度学习 v2.01)是输入特征的一个 仿射变换(affine transformation)。仿射变换的特点是通过 加权和对特征进行线性变换(linear transformation),并通过偏置项来进行平移(translation)。 给定一个数据集,我们的目标是寻找模型的权重w和偏置b,使得根据模型做出的预测大体符合数据里的真实 价格。输出的预测值由输入特征通过线性模型的仿射变换决定,仿射变换由所选权重和偏置确定。 学习有用的表示。 218 6. 卷积神经网络 图6.1.1: 沃尔多游戏示例图。 现在,我们将上述想法总结一下,从而帮助我们设计适合于计算机视觉的神经网络架构。 1. 平移不变性(translation invariance):不管检测对象出现在图像中的哪个位置,神经网络的前面几层 应该对相同的图像区域具有相似的反应,即为“平移不变性”。 2. 局部性(locality):神经网络的前 模型在各类现代人工智能 应用中发挥着至关重要的作用,因此我们将其做为本章剩余部分和 10节的重点。为此,本节将介绍机器翻译 问题及其后文需要使用的数据集。 机器翻译(machine translation)指的是将序列从一种语言自动翻译成另一种语言。事实上,这个研究领域可 以追溯到数字计算机发明后不久的20世纪40年代,特别是在第二次世界大战中使用计算机破解语言编码。几 十年来,在使用神0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.01)是输入特征的一个 仿射变换(affine transformation)。仿射变换的特点是通过 加权和对特征进行线性变换(linear transformation),并通过偏置项来进行平移(translation)。 给定一个数据集,我们的目标是寻找模型的权重w和偏置b,使得根据模型做出的预测大体符合数据里的真实 价格。输出的预测值由输入特征通过线性模型的仿射变换决定,仿射变换由所选权重和偏置确定。 学习有用的表示。 218 6. 卷积神经网络 图6.1.1: 沃尔多游戏示例图。 现在,我们将上述想法总结一下,从而帮助我们设计适合于计算机视觉的神经网络架构。 1. 平移不变性(translation invariance):不管检测对象出现在图像中的哪个位置,神经网络的前面几层 应该对相同的图像区域具有相似的反应,即为“平移不变性”。 2. 局部性(locality):神经网络的前 模型在各类现代人工智能 应用中发挥着至关重要的作用,因此我们将其做为本章剩余部分和 10节的重点。为此,本节将介绍机器翻译 问题及其后文需要使用的数据集。 机器翻译(machine translation)指的是将序列从一种语言自动翻译成另一种语言。事实上,这个研究领域可 以追溯到数字计算机发明后不久的20世纪40年代,特别是在第二次世界大战中使用计算机破解语言编码。几 十年来,在使用神0 码力 | 797 页 | 29.45 MB | 1 年前3
 Machine Learning Pytorch TutorialBERT, GPT, ...) ○ Fairseq (sequence modeling for NLP & speech) ○ ESPnet (speech recognition, translation, synthesis, ...) ○ Most implementations of recent deep learning papers ○ ... References ● Machine0 码力 | 48 页 | 584.86 KB | 1 年前3 Machine Learning Pytorch TutorialBERT, GPT, ...) ○ Fairseq (sequence modeling for NLP & speech) ○ ESPnet (speech recognition, translation, synthesis, ...) ○ Most implementations of recent deep learning papers ○ ... References ● Machine0 码力 | 48 页 | 584.86 KB | 1 年前3
 复杂环境下的视觉同时定位与地图构建the total frame number), and the tracking success ratio after initialization. Group A: simple translation Group B: there are loops Group C: slow and nearly pure rotation Group D: fast motion with strong0 码力 | 60 页 | 4.61 MB | 1 年前3 复杂环境下的视觉同时定位与地图构建the total frame number), and the tracking success ratio after initialization. Group A: simple translation Group B: there are loops Group C: slow and nearly pure rotation Group D: fast motion with strong0 码力 | 60 页 | 4.61 MB | 1 年前3
 Keras: 基于 Python 的深度学习库PDF version, please visit https://github.com/wanzhenchn/keras-docs-zh. Thanks for the Chinese translation work done by keras-team, this document is produced based on it. Statement: This document can 是诡计多端的,他们带有一些不会实现的 信息;那些穿过抛光的喇叭出来的人背后具有真理,对于看到他们的人来说是完成 的。” Homer, Odyssey 19. 562 ff (Shewring translation). 为什么选择 KERAS? 5 2 为什么选择 Keras? 在如今无数深度学习框架中,为什么要使用 Keras 而非其他?以下是 Keras 与现有替代品的 一些比较。 2.1 Encoder-Decoder for Statistical Machine Transla- tion • On the Properties of Neural Machine Translation: Encoder-Decoder Approaches 关于 KERAS 网络层 94 • Empirical Evaluation of Gated Recurrent Neural0 码力 | 257 页 | 1.19 MB | 1 年前3 Keras: 基于 Python 的深度学习库PDF version, please visit https://github.com/wanzhenchn/keras-docs-zh. Thanks for the Chinese translation work done by keras-team, this document is produced based on it. Statement: This document can 是诡计多端的,他们带有一些不会实现的 信息;那些穿过抛光的喇叭出来的人背后具有真理,对于看到他们的人来说是完成 的。” Homer, Odyssey 19. 562 ff (Shewring translation). 为什么选择 KERAS? 5 2 为什么选择 Keras? 在如今无数深度学习框架中,为什么要使用 Keras 而非其他?以下是 Keras 与现有替代品的 一些比较。 2.1 Encoder-Decoder for Statistical Machine Transla- tion • On the Properties of Neural Machine Translation: Encoder-Decoder Approaches 关于 KERAS 网络层 94 • Empirical Evaluation of Gated Recurrent Neural0 码力 | 257 页 | 1.19 MB | 1 年前3
 AI大模型千问 qwen 中文文档capable of natural language understanding, text generation, vision understanding, audio understanding, tool use, role play, playing as AI agent, etc. 最新版本 Qwen1.5 有以下特点: • 6 种模型规模,包括 0.5B、1.8B、4B、7B、14B 和 { "from": "gpt", "value": "model response" } ], "system": "system prompt (optional)", "tools": "tool description (optional)" } ] 2. 在 data/dataset_info.json 文件中提供您的数据集定义,并采用以下格式: 1.12. 有监督微调 35 Qwen parse from qwen_agent.agents import Assistant from qwen_agent.tools.base import BaseTool, register_tool llm_cfg = { # Use the model service provided by DashScope: 'model': 'qwen-max', 'model_server':0 码力 | 56 页 | 835.78 KB | 1 年前3 AI大模型千问 qwen 中文文档capable of natural language understanding, text generation, vision understanding, audio understanding, tool use, role play, playing as AI agent, etc. 最新版本 Qwen1.5 有以下特点: • 6 种模型规模,包括 0.5B、1.8B、4B、7B、14B 和 { "from": "gpt", "value": "model response" } ], "system": "system prompt (optional)", "tools": "tool description (optional)" } ] 2. 在 data/dataset_info.json 文件中提供您的数据集定义,并采用以下格式: 1.12. 有监督微调 35 Qwen parse from qwen_agent.agents import Assistant from qwen_agent.tools.base import BaseTool, register_tool llm_cfg = { # Use the model service provided by DashScope: 'model': 'qwen-max', 'model_server':0 码力 | 56 页 | 835.78 KB | 1 年前3
 Experiment 1: Linear RegressionYou should get a figure similar to Fig. 2. If you are using Matlab/Octave, you can use the orbit tool to view this plot from different viewpoints. What is the relationship between this 3D surface and0 码力 | 7 页 | 428.11 KB | 1 年前3 Experiment 1: Linear RegressionYou should get a figure similar to Fig. 2. If you are using Matlab/Octave, you can use the orbit tool to view this plot from different viewpoints. What is the relationship between this 3D surface and0 码力 | 7 页 | 428.11 KB | 1 年前3
共 12 条
- 1
- 2













