 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures'WrittenWork'] The data is in CSV format with columns: class-id, title and description. The class id is 1-indexed, and the other two fields, title and description, are self-explanatory. Let’s take a look at for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017). On the other hand, a DSC block (figure 4-21) performs two step convolution. In the first step, the input is convolved with m (dk define a get_conv_builder() function that chooses between a regular convolution block and a depthwise convolution block. LEARNING_RATE = 0.001 N_CLASSES = 3 layer_id = -1 def get_layer_id(): global0 码力 | 53 页 | 3.92 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures'WrittenWork'] The data is in CSV format with columns: class-id, title and description. The class id is 1-indexed, and the other two fields, title and description, are self-explanatory. Let’s take a look at for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017). On the other hand, a DSC block (figure 4-21) performs two step convolution. In the first step, the input is convolved with m (dk define a get_conv_builder() function that chooses between a regular convolution block and a depthwise convolution block. LEARNING_RATE = 0.001 N_CLASSES = 3 layer_id = -1 def get_layer_id(): global0 码力 | 53 页 | 3.92 MB | 1 年前3
 【PyTorch深度学习-龙龙老师】-测试版202112figure(figsize=(16,12)) axes = plt.gca() axes.set(xlabel="$x_1$", ylabel="$x_2$") plt.title(plot_name, fontsize=30) plt.subplots_adjust(left=0.20) plt.subplots_adjust(right=0.80) predict_classes(np.c_[XX.ravel(), YY.ravel()]) title = "网络层数({})".format(n) file = "网络容量%f.png"%(2+n*1) make_plot(X_train, y_train, title, file, XX, YY, preds) 9.8.3 Dropout 的影响 为了探讨 predict_classes(np.c_[XX.ravel(), YY.ravel()]) title = "Dropout({})".format(n) file = "Dropout%f.png"%(n) make_plot(X_train, y_train, title, file, XX, YY, preds) 9.8.4 正则化的影响 为了探讨正则化系数0 码力 | 439 页 | 29.91 MB | 1 年前3 【PyTorch深度学习-龙龙老师】-测试版202112figure(figsize=(16,12)) axes = plt.gca() axes.set(xlabel="$x_1$", ylabel="$x_2$") plt.title(plot_name, fontsize=30) plt.subplots_adjust(left=0.20) plt.subplots_adjust(right=0.80) predict_classes(np.c_[XX.ravel(), YY.ravel()]) title = "网络层数({})".format(n) file = "网络容量%f.png"%(2+n*1) make_plot(X_train, y_train, title, file, XX, YY, preds) 9.8.3 Dropout 的影响 为了探讨 predict_classes(np.c_[XX.ravel(), YY.ravel()]) title = "Dropout({})".format(n) file = "Dropout%f.png"%(n) make_plot(X_train, y_train, title, file, XX, YY, preds) 9.8.4 正则化的影响 为了探讨正则化系数0 码力 | 439 页 | 29.91 MB | 1 年前3
 动手学深度学习 v2.0set_visible(False) if titles: (continues on next page) 112 3. 线性神经网络 (continued from previous page) ax.set_title(titles[i]) return axes 以下是训练数据集中前几个样本的图像及其相应的标签。 X, y = next(iter(data.DataLoader(mnist_train, 提供 越来越粗糙的抽象。就像半导体设计师从指定晶体管到逻辑电路再到编写代码一样,神经网络研究人员已经 从考虑单个人工神经元的行为转变为从层的角度构思网络,通常在设计架构时考虑的是更粗糙的块(block)。 之前我们已经介绍了一些基本的机器学习概念,并慢慢介绍了功能齐全的深度学习模型。在上一章中,我们 从零开始实现了多层感知机的每个组件,然后展示了如何利用高级API轻松地实现相同的模型。为了易于学 2016)。目前ResNet架构仍然是许多 视觉任务的首选架构。在其他的领域,如自然语言处理和语音,层组以各种重复模式排列的类似架构现在也 是普遍存在。 为了实现这些复杂的网络,我们引入了神经网络块的概念。块(block)可以描述单个层、由多个层组成的组 件或整个模型本身。使用块进行抽象的一个好处是可以将一些块组合成更大的组件,这一过程通常是递归的, 如 图5.1.1所示。通过定义代码来按需生成任意复杂度的块0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0set_visible(False) if titles: (continues on next page) 112 3. 线性神经网络 (continued from previous page) ax.set_title(titles[i]) return axes 以下是训练数据集中前几个样本的图像及其相应的标签。 X, y = next(iter(data.DataLoader(mnist_train, 提供 越来越粗糙的抽象。就像半导体设计师从指定晶体管到逻辑电路再到编写代码一样,神经网络研究人员已经 从考虑单个人工神经元的行为转变为从层的角度构思网络,通常在设计架构时考虑的是更粗糙的块(block)。 之前我们已经介绍了一些基本的机器学习概念,并慢慢介绍了功能齐全的深度学习模型。在上一章中,我们 从零开始实现了多层感知机的每个组件,然后展示了如何利用高级API轻松地实现相同的模型。为了易于学 2016)。目前ResNet架构仍然是许多 视觉任务的首选架构。在其他的领域,如自然语言处理和语音,层组以各种重复模式排列的类似架构现在也 是普遍存在。 为了实现这些复杂的网络,我们引入了神经网络块的概念。块(block)可以描述单个层、由多个层组成的组 件或整个模型本身。使用块进行抽象的一个好处是可以将一些块组合成更大的组件,这一过程通常是递归的, 如 图5.1.1所示。通过定义代码来按需生成任意复杂度的块0 码力 | 797 页 | 29.45 MB | 1 年前3
 Keras: 基于 Python 的深度学习库来保存我的模型? 3.3.2 如何引用 Keras? 如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例: @misc{chollet2015keras, title={Keras}, author={Chollet, Fran\c{c}ois and others}, year={2015}, publisher={GitHub}, howpubli = VGG19(weights='imagenet') model = Model(inputs=base_model.input, outputs=base_model.get_layer('block4_pool').output) img_path = 'elephant.jpg' img = image.load_img(img_path, target_size=(224, 224)) img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) 预训练模型 APPLICATIONS 160 block4_pool_features = model.predict(x) 13.2.4 在新类上微调 InceptionV3 from keras.applications.inception_v30 码力 | 257 页 | 1.19 MB | 1 年前3 Keras: 基于 Python 的深度学习库来保存我的模型? 3.3.2 如何引用 Keras? 如果 Keras 有助于您的研究,请在你的出版物中引用它。以下是 BibTeX 条目引用的示例: @misc{chollet2015keras, title={Keras}, author={Chollet, Fran\c{c}ois and others}, year={2015}, publisher={GitHub}, howpubli = VGG19(weights='imagenet') model = Model(inputs=base_model.input, outputs=base_model.get_layer('block4_pool').output) img_path = 'elephant.jpg' img = image.load_img(img_path, target_size=(224, 224)) img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) 预训练模型 APPLICATIONS 160 block4_pool_features = model.predict(x) 13.2.4 在新类上微调 InceptionV3 from keras.applications.inception_v30 码力 | 257 页 | 1.19 MB | 1 年前3
 Qcon北京2018-《深度学习在视频搜索领域的实践》-刘尚堃pdfsize = 100 �batch_size*6, 128) Cosine similar Query semantic Title.1 semantic Title.2 semantic Title.3 semantic Title.4 semantic Title.5 semantic Cosine.1 Cosine.2 Cosine.3 Cosine.4 Cosine.5 softmax ���query ��������� • ground truth���NDCG��1% ������ • ��FastText Vector���embedding • ���+��� ��title�����99.0% • ����� billion�� ��������� • bi-LSTM + attention • ��pai-tensorflow������ 语k模型——总结0 码力 | 24 页 | 9.60 MB | 1 年前3 Qcon北京2018-《深度学习在视频搜索领域的实践》-刘尚堃pdfsize = 100 �batch_size*6, 128) Cosine similar Query semantic Title.1 semantic Title.2 semantic Title.3 semantic Title.4 semantic Title.5 semantic Cosine.1 Cosine.2 Cosine.3 Cosine.4 Cosine.5 softmax ���query ��������� • ground truth���NDCG��1% ������ • ��FastText Vector���embedding • ���+��� ��title�����99.0% • ����� billion�� ��������� • bi-LSTM + attention • ��pai-tensorflow������ 语k模型——总结0 码力 | 24 页 | 9.60 MB | 1 年前3
 阿里云上深度学习建模实践-程孟力推荐模型特征 图像搜索 解决方案: 多模态预训练 Swin transformer based (Violet) VIT Video Fram es Bert Title OCR Cls Tok en Title feature OCR feature Im age feature M HSA Fusion M VM VTM M TM Tran sform er0 码力 | 40 页 | 8.51 MB | 1 年前3 阿里云上深度学习建模实践-程孟力推荐模型特征 图像搜索 解决方案: 多模态预训练 Swin transformer based (Violet) VIT Video Fram es Bert Title OCR Cls Tok en Title feature OCR feature Im age feature M HSA Fusion M VM VTM M TM Tran sform er0 码力 | 40 页 | 8.51 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesstructure into the process of pruning. One way to do this is through pruning blocks of weights together (block sparsity). The blocks could be 1-D, 2-D or 3-D, and so on. Let’s start with a simple example of a neuron in the first layer to the neurons in the second layer as shown in figure 5-3. Figure 5-3: 1-D block pruning between two dense layers. The network on the right is the pruned version of the network on blocks. Our model achieved an accuracy of 85.11%. Here, we will prune the convolution blocks from block two (zero indexed) onwards. We will leave the deconvolution blocks untouched. We define a create_model_for_pruning()0 码力 | 34 页 | 3.18 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquesstructure into the process of pruning. One way to do this is through pruning blocks of weights together (block sparsity). The blocks could be 1-D, 2-D or 3-D, and so on. Let’s start with a simple example of a neuron in the first layer to the neurons in the second layer as shown in figure 5-3. Figure 5-3: 1-D block pruning between two dense layers. The network on the right is the pruned version of the network on blocks. Our model achieved an accuracy of 85.11%. Here, we will prune the convolution blocks from block two (zero indexed) onwards. We will leave the deconvolution blocks untouched. We define a create_model_for_pruning()0 码力 | 34 页 | 3.18 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationtransferable architectures for scalable image recognition. NASNet cells are composed of blocks. A single block corresponds to two hidden inputs, two primitive operations for the hidden states, and a combination operation as shown in figure 7-8 (left). NASNet predicts these five inputs and operations for every block. Each cell contains such blocks. Hence, for each cell, NASNet predicts parameters. Since we predict paper, the value for is chosen to be 5. Figure 7-8 (right) shows a predicted block. Figure 7-8: The structure of a block used to compose normal and reduction cells. The image on the left shows the timesteps0 码力 | 33 页 | 2.48 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationtransferable architectures for scalable image recognition. NASNet cells are composed of blocks. A single block corresponds to two hidden inputs, two primitive operations for the hidden states, and a combination operation as shown in figure 7-8 (left). NASNet predicts these five inputs and operations for every block. Each cell contains such blocks. Hence, for each cell, NASNet predicts parameters. Since we predict paper, the value for is chosen to be 5. Figure 7-8 (right) shows a predicted block. Figure 7-8: The structure of a block used to compose normal and reduction cells. The image on the left shows the timesteps0 码力 | 33 页 | 2.48 MB | 1 年前3
 李东亮:云端图像技术的深度学习模型与应用视觉感知模型 分割 Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward Block convolution convolution 识别 Forward Block Forward Block SACC2017 视觉感知模型-融合 Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward Block convolution convolution 识别 Forward Block Forward Block Forward Block Forward Forward Block deconvolution deconvolution 分割 convolution convolution 检测 识别 Single Frame Predictor SACC2017 视觉感知模型-融合 检测 识别 分割 跟踪 核 心 深度学习 •完全基于深度学习 •统一分类,检测,分割,跟踪 ü通过共享计算提高算法效率 ü通过多个相关任务共同学习提高算法性能0 码力 | 26 页 | 3.69 MB | 1 年前3 李东亮:云端图像技术的深度学习模型与应用视觉感知模型 分割 Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward Block convolution convolution 识别 Forward Block Forward Block SACC2017 视觉感知模型-融合 Forward Block Forward Block deconvolution deconvolution convolution convolution 检测 Forward Block Forward Block convolution convolution 识别 Forward Block Forward Block Forward Block Forward Forward Block deconvolution deconvolution 分割 convolution convolution 检测 识别 Single Frame Predictor SACC2017 视觉感知模型-融合 检测 识别 分割 跟踪 核 心 深度学习 •完全基于深度学习 •统一分类,检测,分割,跟踪 ü通过共享计算提高算法效率 ü通过多个相关任务共同学习提高算法性能0 码力 | 26 页 | 3.69 MB | 1 年前3
 PyTorch Release Notespaper. It is based on the regular ResNet model, which substitutes 3x3 convolutions in the bottleneck block for 3x3 grouped convolutions. This model script is available on GitHub. ‣ SE-ResNext model: This paper. It is based on the regular ResNet model, which substitutes 3x3 convolutions in the bottleneck block for 3x3 grouped convolutions. This model script is available on GitHub. ‣ SE-ResNext model: This paper. It is based on the regular ResNet model, which substitutes 3x3 convolutions in the bottleneck block for 3x3 grouped convolutions. This model script is available on GitHub. ‣ SE-ResNext model: This0 码力 | 365 页 | 2.94 MB | 1 年前3 PyTorch Release Notespaper. It is based on the regular ResNet model, which substitutes 3x3 convolutions in the bottleneck block for 3x3 grouped convolutions. This model script is available on GitHub. ‣ SE-ResNext model: This paper. It is based on the regular ResNet model, which substitutes 3x3 convolutions in the bottleneck block for 3x3 grouped convolutions. This model script is available on GitHub. ‣ SE-ResNext model: This paper. It is based on the regular ResNet model, which substitutes 3x3 convolutions in the bottleneck block for 3x3 grouped convolutions. This model script is available on GitHub. ‣ SE-ResNext model: This0 码力 | 365 页 | 2.94 MB | 1 年前3
共 17 条
- 1
- 2













