AI大模型千问 qwen 中文文档TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # This will print the output in the streaming mode. generated_ids = model.generate( model_inputs, max_new_tokens=512, streamer=streamer, ) 除了使用 1.15.4 检索增强(RAG) 现在您可以输入查询,Qwen1.5 将基于索引文档的内容提供答案。 query_engine = index.as_query_engine() your_query = "" print(query_engine.query(your_query).response) 1.16 Langchain This guide helps 0 码力 | 56 页 | 835.78 KB | 1 年前3
PyTorch Release Noteswith GPU support for NGC containers, when you run a container, the following occurs: ‣ The Docker engine loads the image into a container which runs the software. ‣ You define the runtime resources of Deep Learning Framework containers are no longer tested on Pascal GPU architectures. ‣ Transformer Engine is a library for accelerating Transformer models on NVIDIA GPUs. It includes support for 8-bit floating which provides better training and inference performance with lower memory utilization. Transformer Engine also includes a collection of highly optimized modules for popular Transformer architectures and0 码力 | 365 页 | 2.94 MB | 1 年前3
QCon北京2018-《从键盘输入到神经网络--深度学习在彭博的应用》-李碧野wikimedia.org/wiki/File:Nvidia_logo.svg and https://commons.wikimedia.org/wiki/File:Docker_(container_engine)_l ogo.png May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons org/wikipedia/commons/6/67/Kubernetes_logo.svg and https://commons.wikimedia.org/wiki/File:Docker_(contai ner_engine) _logo.png May be re-distributed in accordance with the terms of the CC-SA 4.0 license https://creativecommons0 码力 | 64 页 | 13.45 MB | 1 年前3
超大规模深度学习在美团的应用-余建平提供系统的平台化工具,为用户提供易用的界面操作; MLX模型能力 MLX平台架构 MLX平台架构 • 基于Worker + PS架构搭建 • Worker 模型计算引擎(Engine) 计算图框架(Graph) • 模型计算引擎Engine 模型结构处理 与PS通信交换模型参数 计算图的计算 • 计算图框架Graph 计算逻辑抽象op,通过op组合形成模型结构 提供正0 码力 | 41 页 | 5.96 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniquessparsifying activation maps to produce robust models. Rhu et al., through their work on Compression DMA Engine12, observed that a non-trivial fraction of activation values for ReLU activation function are naturally International Conference on Machine Learning. PMLR, 2020. 12 Rhu, Minsoo, et al. "Compressing DMA engine: Leveraging activation sparsity for training deep neural networks." 2018 IEEE International Symposium0 码力 | 34 页 | 3.18 MB | 1 年前3
亚马逊AWSAI Services Overviewdetection, sequence matching, regression analysis, network/tribe analysis Netflix • Recommendation engine Pinterest • Image recognition search Fraud.net • Detect online payment fraud DataXu • Leverage0 码力 | 56 页 | 4.97 MB | 1 年前3
keras tutorialRecurrent neural networks(RNN). It is defined as shown below: Keras 49 keras.engine.base_layer.wrapped_fn() It supports the following parameters: cell refers an instance. 0 码力 | 98 页 | 1.57 MB | 1 年前3
Keras: 基于 Python 的深度学习库32) model.add(Flatten()) # 现在:model.output_shape == (None, 65536) 5.2.5 Input [source] keras.engine.topology.Input() Input() 用于实例化 Keras 张量。 Keras 张量是底层后端 (Theano, TensorFlow or CNTK) 的张量对象,我们增加了一些特性,使 如果你的层更改了输入张量的形状,你应该在这 里定义形状变化的逻辑,这让 Keras 能够自动推断各层的形状。 from keras import backend as K from keras.engine.topology import Layer import numpy as np class MyLayer(Layer): def __init__(self, output_dim,0 码力 | 257 页 | 1.19 MB | 1 年前3
共 8 条
- 1













