 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationother words, the above equation scales the gradients from Gradient Descent with a reward signal . The reward signal is based on the accuracy of the child network over the dataset of interest. The policy networks. NASNet searches for the cells that are fitted into a hand-designed child network. The reward signal to the controller is still based on the performance of the child network which tunes it to search for a target child. The early RL based NAS models used the validation accuracy as a primary reward signal which is perfect for the applications that have sufficient compute resources at their disposal. However0 码力 | 33 页 | 2.48 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationother words, the above equation scales the gradients from Gradient Descent with a reward signal . The reward signal is based on the accuracy of the child network over the dataset of interest. The policy networks. NASNet searches for the cells that are fitted into a hand-designed child network. The reward signal to the controller is still based on the performance of the child network which tunes it to search for a target child. The early RL based NAS models used the validation accuracy as a primary reward signal which is perfect for the applications that have sufficient compute resources at their disposal. However0 码力 | 33 页 | 2.48 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesweather and time. The fourth class (none) indicates the absence of an acceptable keyword in the input signal. Figure 3-4: Workflow of a home-automation device which detects three spoken words: hello weather windows of the input. # Apply STFT on the audio data, but keep only the magnitude. x = tf.abs(tf.signal.stft(x, frame_length=256, frame_step=128)) # Convert the labels to a one-hot vector. y = keras0 码力 | 56 页 | 18.93 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesweather and time. The fourth class (none) indicates the absence of an acceptable keyword in the input signal. Figure 3-4: Workflow of a home-automation device which detects three spoken words: hello weather windows of the input. # Apply STFT on the audio data, but keep only the magnitude. x = tf.abs(tf.signal.stft(x, frame_length=256, frame_step=128)) # Convert the labels to a one-hot vector. y = keras0 码力 | 56 页 | 18.93 MB | 1 年前3
 机器学习课程-温州大学-01机器学习-引言scipy.io 数据输入输出 scipy.linalg 线性代数 scipy.ndimage N维图像 scipy.odr 正交距离回归 scipy.optimize 优化算法 scipy.signal 信号处理 scipy.sparse 稀疏矩阵 scipy.spatial 空间数据结构和算法 scipy.special 特殊数学函数 scipy.stats 统计函数 69 Python模块-Matplotlib0 码力 | 78 页 | 3.69 MB | 1 年前3 机器学习课程-温州大学-01机器学习-引言scipy.io 数据输入输出 scipy.linalg 线性代数 scipy.ndimage N维图像 scipy.odr 正交距离回归 scipy.optimize 优化算法 scipy.signal 信号处理 scipy.sparse 稀疏矩阵 scipy.spatial 空间数据结构和算法 scipy.special 特殊数学函数 scipy.stats 统计函数 69 Python模块-Matplotlib0 码力 | 78 页 | 3.69 MB | 1 年前3
 机器学习课程-温州大学-01深度学习-引言scipy.io 数据输入输出 scipy.linalg 线性代数 scipy.ndimage N维图像 scipy.odr 正交距离回归 scipy.optimize 优化算法 scipy.signal 信号处理 scipy.sparse 稀疏矩阵 scipy.spatial 空间数据结构和算法 scipy.special 特殊数学函数 scipy.stats 统计函数 70 Python模块-Matplotlib0 码力 | 80 页 | 5.38 MB | 1 年前3 机器学习课程-温州大学-01深度学习-引言scipy.io 数据输入输出 scipy.linalg 线性代数 scipy.ndimage N维图像 scipy.odr 正交距离回归 scipy.optimize 优化算法 scipy.signal 信号处理 scipy.sparse 稀疏矩阵 scipy.spatial 空间数据结构和算法 scipy.special 特殊数学函数 scipy.stats 统计函数 70 Python模块-Matplotlib0 码力 | 80 页 | 5.38 MB | 1 年前3
 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquescompression technique that has been used across different parts of Computer Science especially in signal processing. It is a process of converting high precision continuous values to low precision discrete0 码力 | 33 页 | 1.96 MB | 1 年前3 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniquescompression technique that has been used across different parts of Computer Science especially in signal processing. It is a process of converting high precision continuous values to low precision discrete0 码力 | 33 页 | 1.96 MB | 1 年前3
 动手学深度学习 v2.0Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673–2681. [Sennrich et al., 2015] Sennrich, R., Haddow, B., & Birch, A. (2015) conversational speech recognition system. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5934–5938). [You et al., 2017] You, Y., Gitman, I., & Ginsburg, B. (2017)0 码力 | 797 页 | 29.45 MB | 1 年前3 动手学深度学习 v2.0Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673–2681. [Sennrich et al., 2015] Sennrich, R., Haddow, B., & Birch, A. (2015) conversational speech recognition system. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 5934–5938). [You et al., 2017] You, Y., Gitman, I., & Ginsburg, B. (2017)0 码力 | 797 页 | 29.45 MB | 1 年前3
共 6 条
- 1













