积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(35)机器学习(35)

语言

全部英语(25)中文(简体)(10)

格式

全部PDF文档 PDF(35)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 35 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    bring significant efficiency gains during the training phase, which is the focus of this chapter. We start this chapter with an introduction to sample efficiency and label efficiency, the two criteria Our journey of learning techniques also continues in the later chapters. Learning Techniques and Efficiency Data Augmentation and Distillation are widely different learning techniques. While data augmentation breadth as efficiency? To answer this question, let’s break down the two prominent ways to benchmark the model in the training phase namely sample efficiency and label efficiency. Sample Efficiency Sample
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    shorter.” Blaise Pascal In the last chapter, we discussed a few ideas to improve the deep learning efficiency. Now, we will elaborate on one of those ideas, the compression techniques. Compression techniques Tensorflow and Tensorflow Lite. An Overview of Compression One of the simplest approaches towards efficiency is compression to reduce data size. For the longest time in the history of computing, scientists representation of one or more layers in a neural network with a possible quality trade off. The efficiency goals could be the optimization of the model with respect to one or more of the footprint metrics
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    improve model deployability by proposing novel ways to reduce model footprint and improve inference efficiency while preserving the problem solving capabilities of their giant counterparts. In the first chapter depicts the sliding window of size 5, the hidden target word, model inputs, and the label for a given sample text in the CBOW task. 7 GloVe - https://nlp.stanford.edu/projects/glove 6 Mikolov, Tomas, Kai depicts the sliding window of size 5, the hidden target word, model inputs, and the label for a given sample text in the Skipgram task. Let’s get to solving the CBOW task8 step by step and train an embedding
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    decision boundary to differentiating positive data samples from negative data samples. Given a test data sample, we will make a more confident decision if its margin (with respect to the decision hy- perplane) 1/∥ω∥ maximized, while the resulting dashed lines satisfy the following condition: for each training sample (x(i), y(i)), ωT x(i) +b ≥ 1 if y(i) = 1, and ωT x(i) + b ≤ 1 if y(i) = −1. This is a quadratic programming set method, gradient projection method. Unfortunately, the existing generic QP solvers is of low efficiency, especially in face of a large training set. 2.2 Preliminary Knowledge of Convex Optimization
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 Lecture 6: Support Vector Machine

    labels from negative labels We make more confident decision if larger margin is given, i.e., the data sample is further away from the hyperplane There exist a infinite number of hyperplanes, but which one illinois.edu/~angelia/L13_constrained_gradient.pdf) ... Existing generic QP solvers is of low efficiency, especially in face of a large training set Feng Li (SDU) SVM December 28, 2021 15 / 82 Convex December 28, 2021 40 / 82 Feature Mapping Consider the following binary classification problem Each sample is represented by a single feature x No linear separator exists for this data Feng Li (SDU) SVM
    0 码力 | 82 页 | 773.97 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    Founder (Slack) We have talked about a variety of techniques in the last few chapters to improve efficiency and boost the quality of deep learning models. These techniques are just a small subset of the blue region. In other words, it doesn't learn from the past trials. Wouldn't it be nice if we could sample more in the favorable regions? The next search strategy does exactly that! Bayesian Optimization evaluated on the target dataset and their performance is recorded. The best performing model in a random sample of models from is selected for mutation. After the mutation, the child's performance is recorded
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 keras tutorial

    evaluate the prediction of the algorithm / Model (once the machine learn) and to cross check the efficiency of the learning process.  Compile the model: Compile the algorithm / model, so that, it learning to optimize the model  activation represent the activation function. Let us consider sample input and weights as below and try to find the result:  input as 2 x 2 matrix [ [1, 2], [3, 4] sample_weight_mode=None, weighted_metrics=None, target_tensors=None) The important arguments are as follows:  loss function  Optimizer  metrics A sample code to
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    tobytes()) return compressed_w To demonstrate the effect of sparsity on compression, we create a sample 2D weight matrix with randomly initialized float values. We also define a sparsity_rate variable improvements, we feel that sparsity will be one of the leading compression techniques used for model efficiency in the coming time. Clustering is also a very powerful compression technique, yet implementing
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    rapid growth. We will establish our motivation behind seeking efficiency in deep learning models. We will also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation Our hope is that even if you just read this chapter, you would be able to appreciate why we need efficiency in deep learning models today, how to think about it in terms of metrics that you care about, and models is rate-limited by their efficiency. While efficiency can be an overloaded term, let us investigate two primary aspects: Training Efficiency Training Efficiency involves benchmarking the model
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    quality with a small number of labels. As we described in chapter 3’s ‘Learning Techniques and Efficiency’ section, labeling of training data is an expensive undertaking. Factoring in the costs of training a new task: 1. Data Efficiency: It relies heavily on labeled data, and hence achieving a high performance on a new task requires a large number of labels. 2. Compute Efficiency: Training for new tasks Model reuse by itself also is a powerful attribute of this scheme, and lends itself to compute efficiency since only have to train the model on a small number of examples, saving training time compute
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
共 35 条
  • 1
  • 2
  • 3
  • 4
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesCompressionArchitecturesLectureNotesonSupportVectorMachineAutomationkerastutorialAdvancedIntroductionTechnicalReview
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩