积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(12)机器学习(12)

语言

全部英语(6)中文(简体)(6)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 12 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 4: Regularization and Bayesian Statistics

    Lecture 4: Regularization and Bayesian Statistics Feng Li Shandong University fli@sdu.edu.cn September 20, 2023 Feng Li (SDU) Regularization and Bayesian Statistics September 20, 2023 1 / 25 Lecture Regularization and Bayesian Statistics 1 Overfitting Problem 2 Regularized Linear Regression 3 Regularized Logistic Regression 4 MLE and MAP Feng Li (SDU) Regularization and Bayesian Statistics September 20, 2023 θ1x y = θ0 + θ1x + θ2x2 y = θ0 + θ1x + · · · + θ5x5 Feng Li (SDU) Regularization and Bayesian Statistics September 20, 2023 3 / 25 Overfitting Problem (Contd.) Underfitting, or high bias, is when the
    0 码力 | 25 页 | 185.30 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    "Non-stochastic best arm identification and hyperparameter optimization." Artificial intelligence and statistics. PMLR, 2016. 1 27, 3 9, 9 3, 27 2, 81 2 9, 9 3, 27 1, 81 3 3, 27 1, 81 4 1, 81 Table 7-1: CHILD_PARAMS = dict( epochs=6, batch_size=128, learning_rate=0.001, train_ds=train_ds, val_ds=val_ds, rolling_accuracies_window=20, max_branch_length=2, blocks=5, cells=2, initial_width=1, initial_channels=4 self.vds = CHILD_PARAMS['val_ds'].batch(256) self.past_accuracies = deque( maxlen=CHILD_PARAMS['rolling_accuracies_window'] ) self.past_accuracies.append(DATASET_PARAMS['baseline_accuracy']) self.layers
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-时间序列总结

    度,并且窗口的长度始终为10个单位长度, 直至移动到末端。 由此可知,通过滑动窗口统计的指标会更加 平稳一些,数据上下浮动的范围会比较小。 57 数据统计—滑动窗口 Pandas中提供了一个窗口方法rolling()。 rolling(window, min_periods=None, center=False, win_ty pe=None, on=None, axis=0, closed=None) ➢ window
    0 码力 | 67 页 | 1.30 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-08机器学习-集成学习

    View of Boosting: Discussion[J]. Annals of Statistics, 2000, 28(2):393-400. [6] FRIEDMAN J H . Stochastic gradient boosting[J]. Computational Statistics & Data Analysis, 2002, 38. 49 参考文献 [7] FRIEDMAN FRIEDMAN J H. Greedy function approximation: A gradient boosting machine[J]. Annals of statistics, 2001: 1189–1232. [8] MACQUEEN J, OTHERS. Some methods for classification and analysis of multivariate multivariate observations[C]//Proceedings of the fifth Berkeley symposium on mathematical statistics and probability. Oakland, CA, USA, 1(14): 281–297. [9] CHEN T, GUESTRIN C. XGBoost:A Scalable Tree Boosting
    0 码力 | 50 页 | 2.03 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 11. 合并与分割

    or split https://blog.openai.com/generative-models/ ▪ Cat ▪ Stack ▪ Split ▪ Chunk cat ▪ Statistics about scores ▪ [class1-4, students, scores] ▪ [class5-9, students, scores] Along distinct dim/axis
    0 码力 | 10 页 | 974.80 KB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 13. Tensor统计

    统计属性 主讲人:龙良曲 statistics https://blog.openai.com/generative-models/ ▪ norm ▪ mean sum ▪ prod ▪ max, min, argmin, argmax ▪ kthvalue, topk norm ▪ v.s. normalize ,e.g. batch_norm ▪ matrix norm v
    0 码力 | 11 页 | 1.28 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Overview September 6, 2023 5 / 57 Prerequisite Courses Linear algebra Calculus Probability and Statistics Information theory Convex Optimization Feng Li (SDU) Overview September 6, 2023 6 / 57 Remarks
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    networks." Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2011. Figure 1-2: Growth of parameters in Computer
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    (x − µ)2 � where µ is the mean and σ2 is the variance Gaussian distributions are important in statistics and are often used in the natural and social science to represent real-valued random variables
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    clusters (0.0002) is lower than that using quantization with 5 bits (0.0003). # Compute various statistics related to size when using quantization / # clustering. def get_quantized_size_bytes(num_elements
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
LectureRegularizationandBayesianStatisticsEfficientDeepLearningBookEDLChapterAutomation机器学习课程温州大学时间序列总结08集成深度PyTorch入门实战11合并分割13Tensor统计OverviewIntroductionGaussianDiscriminantAnalysisNaiveBayesAdvancedCompressionTechniques
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩