积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(18)机器学习(18)

语言

全部英语(16)中文(简体)(2)

格式

全部PDF文档 PDF(18)
 
本次搜索耗时 0.046 秒,为您找到相关结果约 18 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 keras tutorial

    and extensible API.  Minimal structure - easy to achieve the result without any frills.  It supports multiple platforms and backends.  It is user friendly framework which runs on both CPU and another neuron to which it is connected. Each neuron processes a small information and then passes the result to another neuron and this process continues. This is the basic method used by our human brain to layer. The output layer process receives the data from last hidden layer and finally output the result. Keras 13 Convolutional Neural Network (CNN) Convolutional neural network
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    is using close to all available device memory due to an unexpected memory thrashing when `torch.backends.cudnn.benchmark = True` is used. The performance can be restored by disabling `cudnn.benchmark` autotuning could cause a long startup time or a hang. In these cases, disbale autotuning using `torch.backends.cudnn.benchmark = False`. ‣ GNMTv2 inference performance regression of up to 50% due to an MKL `antialiasing` argument for resizing operations in DALI 1.16.0 was changed to `True`, which could result in performance regressions on CPU-limited use cases. Set this argument to `False` to restore the
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    autopep8 -i --select 例如:autopep8 -i --select E128 tests/keras/backend/test_backends.py 8. 提交时,请使用适当的描述性提交消息。 9. 更新文档。如果引入新功能,请确保包含演示新功能用法的代码片段。 10. 提交你的 PR。如果你的更改已在之前的讨论中获得批准,并且你有完整(并通过)的单元
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 深度学习下的图像视频处理技术-沈小勇

    DPE White-box Distort-and-Recover Our result Expert-retouched Visual Comparison: MIT-Adobe FiveK Input JieP HDRNet DPE White-box Distort-and-Recover Our result Expert-retouched More Comparison Results: HDRNet DPE White-Box Distort-and-Recover Our result Limitaion Input Our result More Results Input JieP HDRNet DPE White-box Distort-and-Recover Our result Expert-retouched More Results Input JieP JieP HDRNet DPE White-box Distort-and-Recover Our result Expert-retouched More Results Input JieP HDRNet DPE White-box Distort-and-Recover Our result Expert-retouched More Results Input JieP HDRNet DPE
    0 码力 | 121 页 | 37.75 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    sine wave is a low precision representation which takes integer values in the range [0, 5]. As a result, the quantized wave requires low transmission bandwidth. Figure 2-3: Quantization of sine waves the low precision domain, because we are losing precision when going to a b-bit integer and as a result values which were close in the high precision domain might end up being mapped to the same value values, with the starting and endpoint defined, along with a step value. This returns the following result. [-10. -7.5 -5. -2.5 0. 2.5 5. 7.5 10. ] Now let’s quantize x. # Quantize the
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    10 份,每份长度为 1 result = torch.split(x, split_size_or_sections=1, dim=0) len(result) # 返回的列表为 10 个张量的列表 Out[8]: 10 可以查看切割后的某个张量的形状,它应是某个班级的所有成绩册数据,shape 为[35,8], 例如: In [9]: result[0] # 查看第一个班级的成绩册张量 [10]: x = torch.randn([10,35,8]) # 自定义长度的切割,切割为 4 份,返回 4 个张量的列表 result result = torch.split(x, [4,2,2,2] , dim=0) len(result) Out[10]: 4 查看第一个张量的 shape,根据上述的切割方案,它应该包含了 4 个班级的成绩册,shape 预览版202112 预览版202112 5.2 数据统计 5 应为[4,35,8],验证一下: In [10]: result[0] Out[10]: # torch.Size([4, 35, 8]) tensor([[[-6.95693314e-01, 3.01393479e-01, 1.33964568e-01, ...,]]]) 除了 split 函数可以实现张量分割外,PyTorch
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    which translates Spanish to English. This model translates “Estoy muy bien” to “I am fine”. This result can be used to train our original English to Spanish translation model. Let’s dig deeper into each on every sample results in a dataset 2x the original size. Two transformations applied separately result in a dataset 3x the original size. Can we apply N transformations to create a dataset Nx the size A 50 pixel point shift moves a pixel with initial coordinates to the final coordinates . As a result, the image is vertically shifted by 50px as shown in the top middle image in figure 3-6. Such a
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    in this example we have only one feature, being able to plot this gives a nice sanity-check on our result. (3) Finally, we’d like to make some predictions using the learned hypothesis. Use your model to about 50 iterations at your initial learning rate. In each iteration, calculate J(θ) and store the result in a vector J. After the last iteration, plot the J values against the number of the iteration. In num iterations = 1:50 J ( num iterations ) = %% Calculate your cost function here %% theta = %% Result of gradient descent update %% end % now p l o t J % t e c h n i c a l l y , the f i r s t J s
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    because it controls the number of unique words for which we learn embeddings. A small value for would result in loss of information because most of the words would get mapped to the OOV token. However, if information of the words. The words are all averaged to compute , and we would have got the same result for any other permutation of the words in the context. Hence the name Bag of Words for this family model averages all the embeddings in the input sequence to reduce each input to a single vector. The result is passed through a few dense layers and a softmax activation to generate an output tensor of size
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    activation functions, which saturate at either 1.0 or -1.0 except a very small range of input. As a result, changing the input variable leads to a very tiny gradient (if any), and when there are a large number train models that performed well on unseen data (in other words, the models generalized well). As a result of this trailblazing work, there has been a race to create deeper networks with an ever larger number Learning Deep learning research has been focused on improving on the State of the Art, and as a result we have seen progressive improvements on benchmarks like image classification, text classification
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
共 18 条
  • 1
  • 2
前往
页
相关搜索词
kerastutorialPyTorchReleaseNotesKeras基于Python深度学习图像视频处理技术沈小勇EfficientDeepLearningBookEDLChapterCompressionTechniques深度学习ExperimentLinearRegressionArchitecturesIntroduction
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩