《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationepisode and the past accuracies. The past accuracies are represented by a moving average with a fixed window size. The third and final step is to train the RNN with the cell architectures and their reward signals epochs=6, batch_size=128, learning_rate=0.001, train_ds=train_ds, val_ds=val_ds, rolling_accuracies_window=20, max_branch_length=2, blocks=5, cells=2, initial_width=1, initial_channels=4 ) STATE_SPACE = CHILD_PARAMS['val_ds'].batch(256) self.past_accuracies = deque( maxlen=CHILD_PARAMS['rolling_accuracies_window'] ) self.past_accuracies.append(DATASET_PARAMS['baseline_accuracy']) self.layers = [(0, 1), (10 码力 | 33 页 | 2.48 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesprobability , where the size of the sliding window of context is ( words on each side of the masked word). Let’s take an example with such that our window size is . In this scenario, our training dataset Similarly, Figure 4-6 demonstrates the Skipgram task. Figure 4-5: This figure depicts the sliding window of size 5, the hidden target word, model inputs, and the label for a given sample text in the CBOW vector space." arXiv preprint arXiv:1301.3781 (2013). Figure 4-6: This figure depicts the sliding window of size 5, the hidden target word, model inputs, and the label for a given sample text in the Skipgram0 码力 | 53 页 | 3.92 MB | 1 年前3
AI大模型千问 qwen 中文文档embedding model or modify the context window size or text chunk size depending on your computing resources. Qwen 1.5 model families support a maximum of 32K context window size. import torch from llama_index HuggingFaceLLM( model_name="Qwen/Qwen1.5-7B-Chat", tokenizer_name="Qwen/Qwen1.5-7B-Chat", context_window=30000, max_new_tokens=2000, generate_kwargs={"temperature": 0.7, "top_k": 50, "top_p": 0.95}, me0 码力 | 56 页 | 835.78 KB | 1 年前3
机器学习课程-温州大学-时间序列总结57 数据统计—滑动窗口 Pandas中提供了一个窗口方法rolling()。 rolling(window, min_periods=None, center=False, win_ty pe=None, on=None, axis=0, closed=None) ➢ window -- 表示窗口的大小。 ➢ min_periods -- 每个窗口最少包含的观测值数量。 ➢ center0 码力 | 67 页 | 1.30 MB | 1 年前3
Keras: 基于 Python 的深度学习库如果截断或补齐的值无效,或者序列条目的形状无效。 6.1.3 skipgrams keras.preprocessing.sequence.skipgrams(sequence, vocabulary_size,window_size=4, negative_samples=1.0, shuffle=True, categorical=False, sampling_table=None, seed=None) 个最长出现的词)。注意词汇表中的索引 0 是非单词,将被跳过。 • vocabulary_size: 整数,最大可能词索引 + 1 • window_size: 整数,采样窗口大小(技术上是半个窗口) 。词 w_i 的窗口是 [i - window_size, i + window_size+1]。 • negative_samples: 大于等于 0 的浮点数。0 表示非负(即随机)采样。1 表示与正样本数相0 码力 | 257 页 | 1.19 MB | 1 年前3
深度学习与PyTorch入门实战 - 38. 卷积神经网络卷积神经网络 主讲人:龙良曲 Convolution Moving window Several kernels Animation https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural- networks-260c2de0a050 Notation Input_channels: Kernel_channels:0 码力 | 14 页 | 1.14 MB | 1 年前3
人工智能发展史Sequence ▪ No Memory ▪ Time delay NN http://www.cs.toronto.edu/~fritz/absps/waibelTDNN.pdf Moving window ▪ Inspired LeCun Recurrent Neural Network ▪ Spatial Local ▪ Temporal Local http://www.iro.umontreal0 码力 | 54 页 | 3.87 MB | 1 年前3
动手学深度学习 v2.0zip cd pytorch 注意:如果没有安装unzip,则可以通过运行sudo apt install unzip进行安装。 安装完成后我们可以通过运行以下命令打开Jupyter笔记本(在Window系统的命令行窗口中运行以下命令前, 需先将当前路径定位到刚下载的本书代码解压后的目录): jupyter notebook 9 https://developer.nvidia.com/cuda‐downloads 提 取 所 有 中 心 词 及 其 上 下 文 词。 它 随 机 采 样1到max_window_size之间的整数作为上下文窗口。对于任一中心词,与其距离不超过采样上下文窗 口大小的词为其上下文词。 #@save def get_centers_and_contexts(corpus, max_window_size): """返回跳元模型中的中心词和上下文词""" centers, contexts for i in range(len(line)): # 上下文窗口中间i window_size = random.randint(1, max_window_size) indices = list(range(max(0, i - window_size), min(len(line), i + 1 + window_size))) # 从上下文词中排除中心词 indices.remove(i)0 码力 | 797 页 | 29.45 MB | 1 年前3
超大规模深度学习在美团的应用-余建平不重不丢:重复的数据会使模型有偏,数据的缺失 会使模型丢失重要信息 数据有序性:数据乱序会导致样本穿越的现象 • Log Join框架 双流拼接框架,通过组合方式支持多流拼接 基于Event Time的Window机制拼接方式 基于Low Watermark解决流乱序、流延迟等流式常 见问题 流式拼接框架 • Low Watermark机制 定义了流式数据的时钟,不可逆性 Smooth0 码力 | 41 页 | 5.96 MB | 1 年前3
Experiment 1: Linear Regressionfollowing commands to plot your training set (and label the axes): figure % open a new f i g u r e window plot (x , y , ’ o ’ ) ; ylabel ( ’ Height in meters ’ ) xlabel ( ’Age in years ’ ) You should0 码力 | 7 页 | 428.11 KB | 1 年前3
共 12 条
- 1
- 2













