《Efficient Deep Learning Book》[EDL] Chapter 7 - Automationmomentum of the optimization algorithm and the training batch size. Other aspects of the training pipeline like data augmentation, layer and channel configurations can also be parameterized using hyperparameters The next section dives into the search for neural architectures. Neural Architecture Search On a high level, Neural Architecture Search (NAS) is similar to Hyperparameter Search. In both cases, we search define the architecture of the model that represents the blackbox function. In the hyperparameter tuning project, we searched for the value of dropout_rate which influences the model architecture. In fact0 码力 | 33 页 | 2.48 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniquesprobability and maximum number of augmentations for each type. Moreover, we let the augmentation pipeline choose to apply the individual augmentations probabilistically (with a probability of 0.3 in this RandomWordAug(action='substitute', **aug_args), nac.KeyboardAug() ] flow = naf.Sometimes(chain, pipeline_p=0.3) The nlpaug_fn() function just wraps up the augmentation calls in a tf.py_function, a tensorflow these transformations is that they are intuitive and can be applied without changes to the model architecture. Their benefit is clear in the low data situations as demonstrated through the projects. In the0 码力 | 56 页 | 18.93 MB | 1 年前3
PyTorch Release Notescorresponds to GPUs in the NVIDIA Pascal, NVIDIA Volta™, NVIDIA Turing™, NVIDIA Ampere architecture, and NVIDIA Hopper™ architecture families. For a list of GPUs to which this compute capability corresponds, see was published by the authors of the Transformer-XL paper. Our implementation uses modified model architecture hyperparameters, our modifications were made to achieve better hardware usage and to take advantage corresponds to GPUs in the NVIDIA Pascal, NVIDIA Volta™, NVIDIA Turing™, NVIDIA Ampere architecture, and NVIDIA Hopper™ architecture families. For a list of GPUs to which this compute capability corresponds, see0 码力 | 365 页 | 2.94 MB | 1 年前3
《TensorFlow 2项目进阶实战》6-业务落地篇:实现货架洞察Web应⽤txt 测试 flask 是否能启动 $ python manage.py 扩展启动脚本 manage.py 实现 AI 流水线 ai_pipeline.py 实现 AI 流水线 ai_pipeline.py 实现 AI 流水线 ai_pipeline.py 搭建 AI SaaS 实战:10 分钟快速开发 AI SaaS “Hello TensorFlow” Try it! 交付0 码力 | 54 页 | 6.30 MB | 1 年前3
阿里云上深度学习建模实践-程孟力在线存储 Hologres/OTS BE Redis 读取数据 向量引擎 BE/Hologres/Faiss/Milvus 向量检索 冷启动召 回 冷启动排 序 Pipeline1 Pipeline2 标准化: Standard Solutions 标准化: Standard Solutions 智能推荐解决方案 > 实时推荐方案 3.工程优化复 杂 4.数据获取困0 码力 | 40 页 | 8.51 MB | 1 年前3
深度学习与PyTorch入门实战 - 40. Batch Normcom/syncedreview/facebook-ai-proposes-group-normalization- alternative-to-batch-normalization-fb0699bffae7 Pipeline nn.BatchNorm2d Class variables Test Visualization Advantages ▪ Converge faster ▪ Better performance0 码力 | 16 页 | 1.29 MB | 1 年前3
深度学习与PyTorch入门实战 - 51. LSTM原理LSTM 主讲人:龙良曲 Folded model feature ??@??ℎ + ℎ?@?ℎℎ [0,0,0 … ] Intuitive Pipeline http://harinisuresh.com/2016/10/09/lstms/ http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L15%20Exploding%0 码力 | 16 页 | 1.53 MB | 1 年前3
构建基于富媒体大数据的弹性深度学习计算平台Fusion Gray Update Auto Evaluation Log Server Graph Abstraction Data Flow API Manager Pipeline AVA 弹性深度学习平 台 L1 L2 L3 L4 L5 原子API 基础模型 感知层1 API 感知层2 API Vision 综合API 业务逻辑API Argus机器视觉系统0 码力 | 21 页 | 1.71 MB | 1 年前3
微博在线机器学习和深度学习实践-黄波PS&MPI:DistributionStrategy API,统一分布式语义,解耦分布式架构与模型训练框架 • 使用FP16通信,使用FP32做计算,带宽压力降低一倍 • IO优化 • 多线程样本并发读取,样本读取与计算PIPELINE,实现计算与IO的overlap 4 深度学习-深度学习模型训练 • 分布式模型推理框架:WeiServing 异构CPU集群 kubernetes/ol-submit RPC服务框架0 码力 | 36 页 | 16.69 MB | 1 年前3
《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architecturesmagazine (1991) So far, we have discussed generic techniques which are agnostic to the model architecture. These techniques can be applied in NLP, vision, speech or other domains. However, owing to their gains. Sometimes, it can be rewarding to go back to the drawing board and experiment with another architecture that better suits the task. As an analogy, when renovating a house to improve the lighting, it of Words for this family of model architectures. In practice, you need not be limited to this architecture for solving the CBOW (or Skipgram) task. 12 The Illustrated Word2vec - https://jalammar.github0 码力 | 53 页 | 3.92 MB | 1 年前3
共 25 条
- 1
- 2
- 3













