积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(16)机器学习(16)

语言

全部英语(11)中文(简体)(5)

格式

全部PDF文档 PDF(16)
 
本次搜索耗时 0.073 秒,为您找到相关结果约 16 个.
  • 全部
  • 云计算&大数据
  • 机器学习
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    import pprint class_names = open(os.path.join('dbpedia_csv', 'classes.txt')).read().splitlines() num_classes = len(class_names) # The classes are as follows. pprint.pprint(class_names) There are fourteen end_to_end_model.predict( [['Usain Bolt is a very well known sprinter and Olympic medal winner.']] ) class_names[np.argmax(probabilities[0])] 'Athlete' It works! It’s been quite a journey, let's pause and ponder loading the necessary modules. The Oxford-IIIT dataset is available through the tensorflow_datasets package. We apply the standard preprocessing routines to resize and normalize the images. import tensorflow
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 PyTorch Release Notes

    later R515), 525.85 (or later R525), or 530.30 (or later R530). The CUDA driver's compatibility package only supports particular drivers. Thus, users should upgrade from all R418, R440, R460, and R520 manually install a Conda package manager, and add the conda path to your PYTHONPATH for example, using export PYTHONPATH="/opt/conda/lib/python3.8/site-packages" if your Conda package manager was installed later R515), 525.85 (or later R525), or 530.30 (or later R530). The CUDA driver's compatibility package only supports particular drivers. Thus, users should upgrade from all R418, R440, R460, and R520
    0 码力 | 365 页 | 2.94 MB | 1 年前
    3
  • pdf文档 Keras: 基于 Python 的深度学习库

    None。声明评估结束之前的总步数(批次样本)。默认值 None。 模型 44 返回 标量测试误差(如果模型没有评估指标)或标量列表(如果模型计算其他指标)。属性 model.metrics_names 将提供标量输出的显示标签。 异常 • RuntimeError: 如果模型从未编译。 4.2.3.4 predict predict(self, x, batch_size=None, verbose=0 失函数。 • sample_weight: 样本权重,Numpy 数组。 返回 标量训练误差(如果模型没有评估指标)或标量列表(如果模型计算其他指标)。属性 model.metrics_names 将提供标量输出的显示标签。 异常 • RuntimeError: 如果模型从未编译。 模型 45 4.2.3.6 test_on_batch test_on_batch(self, x 标签,Numpy 数组。 • sample_weight: 样本权重,Numpy 数组。 返回 标量测试误差(如果模型没有评估指标)或标量列表(如果模型计算其他指标)。属性 model.metrics_names 将提供标量输出的显示标签。 异常 • RuntimeError: 如果模型从未编译。 4.2.3.7 predict_on_batch predict_on_batch(self, x)
    0 码力 | 257 页 | 1.19 MB | 1 年前
    3
  • pdf文档 《TensorFlow 2项目进阶实战》2-快速上手篇:动⼿训练模型和部署服务

    plt.imshow(train_images[1]) plt.colorbar() plt.grid(False) plt.show() Preprocess data class_names = [ 'T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat’, 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle yticks ( [ ] ) plt.grid(False) plt.imshow(train_images[i],camp=plt.cm.binary) plt.xlabel(class_names(train_labels[i])) plt.show( ) Build the model Train and evaluate Make prediction Visualize prediction
    0 码力 | 52 页 | 7.99 MB | 1 年前
    3
  • pdf文档 AI大模型千问 qwen 中文文档

    {} maybe_lora_bias = {} lora_bias_names = set() for k, t in named_params: if "lora_" in k: to_return[k] = t bias_name = k.split("lora_")[0] + "bias" lora_bias_names.add(bias_name) elif "bias" in k: maybe_lora_bias[k] maybe_lora_bias[k] = t for k, t in maybe_lora_bias: if bias_name in lora_bias_names: to_return[bias_name] = t else: raise NotImplementedError to_return = {k: maybe_zero_3(v) for k, v in to_return
    0 码力 | 56 页 | 835.78 KB | 1 年前
    3
  • pdf文档 动手学深度学习 v2.0

    '__all__', '__ �→builtins__', '__cached__', '__doc__', '__file__', '__loader__', '__name__', '__package__', '__path__', �→ '__spec__', 'bernoulli', 'beta', 'biject_to', 'binomial', 'categorical', 'cauchy' https://discuss.d2l.ai/t/1822 71 https://archive.ics.uci.edu/ml/machine‐learning‐databases/housing/housing.names 180 4. 多层感知机 def download(name, cache_dir=os.path.join('..', 'data')): #@save """下载一个DATA_HUB中的文件,返回本地文件名""" nn.Linear: nn.init.xavier_uniform_(m.weight) if type(m) == nn.GRU: for param in m._flat_weights_names: if "weight" in param: nn.init.xavier_uniform_(m._parameters[param]) net.apply(xavier_init_weights)
    0 码力 | 797 页 | 29.45 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    untouched. We define a create_model_for_pruning() function which takes a pre-trained model and the names of the prunable blocks as inputs. It returns a model that is capable of sparse training. It clones prepares the input arguments to create a model for pruning. The prunable_blocks variable is the list of names of prunable convolution blocks. We prune all convolution blocks from second (zero indexed) onwards
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 PyTorch Tutorial

    torch.cuda.FloatTensor *Assume 't' is a tensor Autograd • Autograd • Automatic Differentiation Package • Don’t need to worry about partial differentiation, chain rule etc.. • backward() does that • loss a tensor Autograd (continued) • Manual Weight Update - example Optimizer • Optimizers (optim package) • Adam, Adagrad, Adadelta, SGD etc.. • Manually updating is ok if small number of weights • Imagine
    0 码力 | 38 页 | 4.09 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    notebook here. Tensorflow provides easy access to this dataset through the tensorflow-datasets package. Let’s start by loading the training and validation splits of the dataset. The make_dataset() function keras.losses as losses We will install the pydub dependency required by the tensorflow_datasets package for processing audio data, and load the speech_commands dataset from TFDS. !pip install pydub data_ds
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    for more information on data types. Tensors – PyTorch v.s. NumPy ● Many functions have the same names as well PyTorch NumPy x.reshape / x.view x.reshape x.squeeze() x.squeeze() x.unsqueeze(1) np.expand_dims(x
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
共 16 条
  • 1
  • 2
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesPyTorchReleaseNotesKeras基于Python深度学习TensorFlow快速入门实战上手训练模型部署服务AI千问qwen中文文档动手v2AdvancedCompressionTechniquesTutorialMachinePytorch
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩